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ABSTRACT

Along with the convenience brought by the increasing usage of
autonomous systems, unexpected accidents happened. These ac-
cidents emphasize the need for autonomous systems to possess
the ability to recognize potential hazards, effectively communi-
cate these hazards to human operators, and facilitate retrospective
analyses. This ability, including recognition, prejudgment, post-
analysis, and reasoning, falls within the realm of cognitive ability,
which is important in improving the safety and outcomes in the
decision-making process of such systems. In this paper, we present
a foundational step toward addressing the safety challenges involv-
ing the cognitive ability of artificial agents. We study the interplay
between knowledge and the cognitive ability of intelligent agents.
The main technical result is a sound and complete bimodal logical
system that describes the interplay between the knowledge and
cognitive ability modalities.
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1 INTRODUCTION

Self-driving cars are gradually becoming part of people’s everyday
lives. However, safety concerns are rising along with the technol-
ogy advancements. Designing self-driving systems equipped with
the ability to provide safe and reliable driving experiences is a
complicated task. A federal government’s top auto-safety regulator
disclosed in 2022 that “nearly 400 crashes in the United States in 10
months involved cars using advanced driver-assistance technolo-
gies" [6]. Past accidents show that some autonomous systems are
still questioned to be flawed. For example, Autopilot, Tesla’s driver-
assistance system, was involved in “three fatal crashes occurred
in a 51-day span" in the summer of 2022 with a similar pattern:
“a person driving a Tesla in the early morning hours with Autopi-
lot active strikes a motorcycle" [29]. These crashes raise concerns
among motorcycle advocates. They worry that Autopilot may be in-
competent in fully recognizing motorcycles while lulling its drivers
into a false “sense of complacency and inattentiveness” [29].

This false sense of security in drivers, believing their autonomous
cars drive by themselves, also led to other accidents unrelated to
motorcycles. For instance, in 2020, Rafaela Vasquez, the backup
driver of an Uber test vehicle operating in autonomous mode, was
charged with negligent homicide after the Uber vehicle struck and
killed a pedestrian in Arizona in 2018 [28]. In 2023, in San Francisco,
a Tesla Model Y, allegedly in self-driving mode, failed to slow down
while a school bus displayed its stop sign. Consequently, a teenager
was struck and thrown into the windshield, flew into the air, and
landed in the middle of the road [41].

These incidents highlight significant issues in the current ca-
pabilities of self-driving technology. Autonomous cars are usually
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equipped with advanced technologies to assist in driving and avoid
collisions. These advanced technologies provide self-driving sys-
tems with cognitive abilities to acquire information (i.e., the de-
tected objects or other cars’ speed and inertia), reason about the
obtained information, and make decisions. Unfortunately, accidents
still happen. How can self-driving systems be designed to better pre-
vent accidents and reduce crashes? Let us look into these accidents
more closely.

The 2018 Uber accident accident occurred when the victim, 49-
year-old Elaine Herzberg, was slowly walking with a bicycle to cross
a major road. The autonomous car did not slow down or change
its course to avoid the pedestrian, resulting in a fatal crash [39]. It
was reported [5] that the self-driving system indeed detected the
pedestrian with her bicycle six seconds before the crash; however, it
classified her as an unknown object. Unable to correctly recognize
the pedestrian and her bicycle, the self-driving system did not take
any action to actively avoid the pedestrian. When the system finally
determined that emergency braking was required, it was only 1.3
seconds before the impact, too late to avoid the crash. From the
report [28], the self-driving system relied on the driver to intervene
and take action in emergencies, but it was not designed to alert the
driver. The driver, Rafaela Vasquez, without receiving any warning,
was watching television on her smartphone when the pedestrian
was struck by the car, directly causing the pedestrian’s death.

In this accident, Rafaela Vasquez was charged with negligent
homicide. However, if the system had created a warning (e.g., a
sound with a message on the display screen) right after it detected
the pedestrian, the driver might have had enough time to react to
prevent the tragedy. Even when a self-driving system is uncertain
about an undesirable outcome, it should still warn the driver re-
garding any detected "unknown" information instead of assuming
it had permission to proceed, particularly in situations where dri-
ver intervention may be required. Just as Floridi and Sanders [12]
argued that one of the guidelines for a moral intelligent agent is in-
teractivity — the ability to respond to stimulus, a reliable self-driving
system should have the ability to provide warnings when foreseeing a
potentially undesirable outcome.

For self-driving systems to have such an ability, they must not
only be aware of the tasks they are performing, such as accelerating
or slowing down, but also of the contextual conditions that dictate
how these tasks should be executed. For instance, a self-driving car
must know that it needs to stop when approaching a school bus
displaying a stop sign, but not when approaching a temporarily
parked Amazon truck. Thus, it is critical that the system should
know its own capabilities. Let y represent the statement “hitting an
obstacle", the modal formula Ay y denote the statement that “the
autonomous car has the ability to foresee that the current action
leads to the outcome y," and Kgypo denote “the autonomous car
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knows that". Then, the following formula holds:

Aauto)( i KautaAautoX (1)

Once the system concludes Agyro ), it knows Agyro ¥ and should
alert the driver about y. Note that such communication should
occur before the potential accident to serve as a warning. Thus, the
knowledge modality K is the ex ante knowledge, i.e., the agent’s
knowledge before the event happens.

Another important feature that self-driving systems should have
is the ability to provide information for retrospective analysis. In
the 2023 Tesla accident, it was unclear why the self-driving Tesla
never slowed down while the school bus displayed its stop sign.
Similarly, the recurring pattern of Autopilot hitting motorcycles also
lacked a clear explanation. As autonomous agents are rational, they
are designed to take the best possible action given any situation.
However, if the “best” possible action results in an accident, it
often means the system missed certain critical information and
made a wrong decision, leading to an unfavorable outcome. To
prevent similar outcomes in the future, it is critical for a self-driving
system to have the ability to provide information for an undesirable
outcome. This retrospective analysis can help designers identify
and rectify the underlying issues, thereby enhancing the safety and
reliability of the system.

Let ¢ represent “pedestrian is hit by a car", i/ represent “car keeps
driving” and modality A represent “have the ability to provide infor-
mation/explain/conclude’. Normally, when a pedestrian is crossing
the road, the autonomous car knows that if the car keeps driving,
it will hit the pedestrian. This is represented by Kayro (¥ — ¢).
Yet, in the 2023 Tesla case, despite knowing that driving () would
lead to hitting a pedestrian (¢), the car kept driving. This implies
that the Tesla system considered the situation safe. Thus, if the
autonomous car has the ability to provide an explanation for its
actions (Agurot), then it must also be able to provide an explana-
tion for the consequences of those actions (Aguzo¢). The following
logical expression formalizes this relationship:

Kauto (lﬁ — @) — (Aautoy — Aquto®) (2)

According to Tesla’s manual [27], drivers have the option to en-
able a feature in the Autopilot of Model Y, the same model involved
in this accident, which allows the car to automatically stop for red
lights or stop signs. It remains unclear whether this feature was
enabled in the vehicle at the time of the incident. If it was not en-
abled, the system should be designed with the ability of providing
warnings to the drivers, enhancing the safety and reliability.

On the other hand, consider a situation when the feature for
detecting red lights or stop signs is enabled. If the Autopilot does
not recognize any red light or stop sign, then the car will keep
driving. Let ; denote “no red light or stop sign is detected” and
i, denote “the feature is on". Recall that i represents “car keeps
driving". Normally, cars can keep driving when there is no red light
or a stop sign detected while the feature is on. If the autonomous
car has this knowledge, then its ability to provide an explanation
for why no red light or stop sign is detected while the feature is
on implies its ability to provide an explanation for keeping driving.
This can be expressed as:

Kauto('y//l A lﬁz - ¢) - (Aauto(wl A ¢2) i Aautow)

In general, it is reasonable to assume that an autonomous car has the
knowledge that it can keep driving when there is no red light or stop
sign is detected while the feature is on. Thus, if the Autopilot has
the ability to provide an explanation for not detecting the stop sign
of the school bus while the detection feature is on (Agyuro (V1 A ¥2)),
then it has the ability to provide an explanation for the car to
keep driving (Aguro), which led to the teenager being struck. By
analyzing the system’s ability to explain its actions, developers can
identify that a self-driving car may not be able to recognize a stop
sign on a school bus.

To summarize, it is crucial for autonomous systems to possess
the ability to recognize potential hazards, effectively communicate
these hazards to the driver, and facilitate retrospective analyses
to enhance safety and reliability. This ability—including recogni-
tion, prejudgment, post-analysis, and reasoning—falls under the
domain of the cognitive ability. Note that autonomous agents are
built on complex architectures, consisting of separate modules for
perception, data management, legislative requirements, and more.
For example, a comprehensive analysis of communication with the
human operator would also need to account for human factors such
as the operator’s awareness, workload, and attention. Our focus,
however, is to study the fundamental properties of the interplay
between cognitive ability and knowledge. A detailed analysis of
the practical aspects of cognitive ability is beyond the scope of this
paper. Our technical contribution is a sound and complete logical
system for reasoning about the interplay between cognitive ability
and knowledge.

The rest of the article is organized as follows. In Section 2, we
discuss the related work and how we position our work in the
literature. In Section 3, we introduce the syntax and the semantics
of our logical system. Section 4 provides a list of axioms of the
system and the proofs of their soundness. The completeness proof
is presented in Section 5. Finally, in Section 6 we conclude.

2 LITERATURE

The concept of ability has been a topic of longstanding philosoph-
ical debate. Van Inwagen [46] argued that ability is a power that
connects an agent to an action. Reid [36] suggested that ability
shares similarities with the traditional notion of active powers,
which involve the will. Ryle [38] linked the concept of ability to
the idea of knowing how to perform an action, while Stanley and
Williamson [43] contended that knowing-how is essentially a form
of knowing-that. Kasirzadeh and McGeer [19] and Mele [30] distin-
guished between two types of ability: specific and general. Specific
ability refers to the capacity of an agent to perform an action when
all necessary conditions are met, whereas general ability refers to
the capacity to perform an action even when not all conditions
are favorable. Robb [37] explored how to integrate intelligent pow-
ers—such as skills or talents—into the account of ability, noting that
these powers are linked to practical intelligence.

Few researchers have explored cognitive ability. Hernandez-
Orallo and Dowe [15] identified key differences between the cog-
nitive abilities of animals and machines: animals possess innate
cognitive abilities, while machines’ abilities are tied to interactive
systems, with actions based on prior observations. Their study in-
troduced the concept of potential cognitive ability, defined as "how
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quickly and likely the process of acquiring the ability is." They mea-
sured various machine characteristics and analyzed relationships
between certain potential abilities, but did not address knowledge.
Konek [20] took a quantitative approach, investigating probabilistic
knowledge and cognitive abilities, and argued that cognitive ability
involves reasoning about how evidence supports or undermines cre-
dences. Unlike both studies, our research explores the relationship
between knowledge and cognitive ability, using a logical framework
to formalize and reason about their interplay.

Pritchard [35] offered a philosophical discussion on the relation-
ship between an agent’s knowledge and cognitive ability, arguing
that an agent can acquire knowledge through its cognitive abil-
ities. Our study, in addition to being grounded in logic, differs
from Pritchard’s by focusing especially on the cognitive abilities of
intelligent agents. In our approach, agents can not only acquire per-
ceived knowledge as situations change but also possess predefined
knowledge, such as road signs or maps.

Our definition of cognitive ability includes the capacity to pro-
vide information for retrospective analysis, which necessitates that
intelligent agents possess the ability to offer explanations. The
study of an intelligent system’s ability to provide information or ex-
planations for its actions dates back more than forty years [40, 44],
to when expert systems were developed to explain why certain
actions were taken. In [40], the ability to explain was achieved
using production rules that encoded domain-specific judgmental
knowledge, linking situations to actions. To explain the system’s
actions, it was required that the explanation system understand
how or why certain rules were applied and maintain a comprehen-
sive record of specific actions taken. This requirement is similar to
our requirement that an intelligent agent should also know its own
capabilities, as formalized in statement (1).

To formally define the concept of ability, some researchers have
employed possible worlds/states semantics [9, 42]. A widely ac-
cepted view is that an agent possesses an ability if the agent per-
forms the action in some possible world [42]. Another popular
approach to the semantics of ability comes from a linguistic per-
spective [21-23], where possible worlds semantics is extended with
contextual factors to analyze abilities within complete assertions.

Many logical systems have explored the interaction between
ability and action. Alechina et al. [3] considered the situations where
agents take actions under limited resources to achieve their goal.
They extended coalition logic with resource bounds to describe both
single-step strategies and multi-step strategies and gave a sound
and complete axiomatization of the logic. Goranko [13] explored
the intersection of coalition logic and alternating temporal logic
(ATL) and provided a complete axiomatization. This work embedded
coalition logic into ATL so that agents can coordinate strategies
with time to achieve goals. Other works include STIT ("seeing to it
that") logic, introduced by Horty and Belnap [18] and axiomatized
first by Xu [47] and later by Balbiani et al. [4], as well as agency
and deontic logic by Horty [17]. Temporal STIT logic was explored
by Lorini [25], and the epistemic logic of blameworthiness was
developed by Naumov and Tao [34]. Other contributions, such as
those by Abarca and Broersen [1], Broersen [7, 8], focus on "seeing
to it that" or responsibility-related concepts. However, none of
these works considers the cognitive ability to provide information

about actions that lead to specific outcomes, an essential aspect for
enhancing the safety and reliability of intelligent agents.

Building on this line of research, we formally define cognitive
ability as the ability of an agent, through its cognition, to perform
an action leading to specific outcomes. Unlike previous work, we
base cognitive ability on cognitive relations formed through infor-
mation acquisition across possible states. Prior research [20, 35] has
shown a strong connection between cognitive ability and knowl-
edge, emphasizing the need to study their interaction for improving
the safety and reliability of autonomous systems. To the best of
our knowledge, we are the first to formalize a logical system that
integrates both knowledge and cognitive ability, proposing a sound
and complete system to reason about their interplay.

3 THE LANGUAGE

In this section, we introduce the formal syntax and semantics of
our logical system. We assume a fixed set of propositional variables
and a fixed set of agents A. The language @ of our logical system
is defined by the grammar: for each a € A,

e=pl-gle—¢|Kap|Agp.
We assume that the constants T and L as well as the Boolean
connective A are defined in the standard way.

To interpret modality A, which represents the ability of an agent,
under its cognition, to perform an action leading to an outcome, we
define a set I of initial states, a set A of actions, a set Q of outcomes,
and a cognition relation ~, for each agent a € A in our model. To
interpret modality K, following the epistemic logic S5, we use an
equivalence relation =, for each agent a € A. Recall that modality
K represents the ex ante knowledge of an agent (see Section 1).
Thus, relation =, is applied on set I. We refer to our modal as a
game because we focus on one-shot games. Since not all transitions
from an initial state to an outcome via an action are valid, we define
a set P of valid transitions, called plays. Additionally, the function
7 is used to interpret the propositional variables, mapping each
propositional variable p into a set of plays where p is true.

For any set A of actions, we use A”! to denote the set of all
functions from set A to set A, which represents the set of all action
profiles. The formal definition of a game is as follows.

DEFINITION 1. A tuple (I, =, A, Q, ~, P, n) is called a game, where

(1) I is a nonempty set of “initial states”,
(2) =4 is an “indistinguishability” equivalence relation on the set
I for each agenta € A,
(3) A is a nonempty set of “actions”,
(4) Q is a nonempty set of “outcomes’,
(5) ~q is a binary relation on set I for agent a € A such that
(a) ~a € =a,
(b) foreach initial statesat, @', "’ € I, ifa =4 o’ anda’ ~4 a”’,
thena ~4 a” .
(6) P is an arbitrary set of tuples (a, 8, ») € I x A7 x Q which
we call the set of “plays”,
(7) m(p) C P for each propositional variable p.

As artificial agents are designed to be rational, to model the
interplay between an agent’s knowledge and cognitive ability, we
require that an agent’s cognition and knowledge be consistent. For
example, if an agent knows that the sign is a stop sign, the agent



should not recognize it as some other sign such as a no-entry sign.
Such consistency is specified in Definition 1 item 5(a) and item 5(b).

Note that the relationship between the cognition relation and the
equivalence relation for knowledge defined in item (5) resembles
the relationship between the belief relation and the equivalence
relation for knowledge defined by [24]. This is because one’s cogni-
tion is tightly related to one’s belief. However, cognition and belief
are not the same concepts. Belief is about the states of a mind while
cognition is the process of acquiring information. For autonomous
agents, such a process is often through sensors, which can some-
times fail. For example, a Google Nest Doorbell will fail to recognize
a delivery person in cold weather (when the temperature drops
below —4°F) [14]. Thus, different from the belief relation in [24],
our cognition relation need not be serial.

Intuitively, cognition in our work may sound related to the aware-
ness in the Awareness Logic [10, 11, 26]. However, they are different
concepts. Awareness Logic distinguishes two kinds of beliefs: im-
plicit belief and explicit belief. The implicit belief is the same as the
belief in [24]. It is called “implicit” because a consequence of what
an agent believes might not be explicitly appreciated by the agent.
Thus, an agent might believe in something deduced by the logic
without being aware of it. From the standpoint that agents should
not have explicit beliefs about propositions they are unaware of,
Awareness Logic models awareness as a set of propositions for each
state, where an agent’s explicit beliefs are what the agent implicitly
believes and is also aware of [10, 26]. Since our cognition relation
differs from the (implicit) belief relation, as argued in the previous
paragraph, our cognition is also distinct from the awareness in the
Awareness Logic.

We consider non-deterministic situations when a complete ac-
tion profile may lead to different outcomes. Thus, a play is a triple
(a, 8, w) rather than a pair (&, §), see Definition 1 item (6).

DEFINITION 2. Foranyplay(a,d, ) ofagame (I,=,A, Q, ~, P, )
and any formula ¢ € @, the satisfaction relation (a, 6, w) v ¢ is
defined recursively:

1) (a,6,0) F p if(a, b, 0) € n(p),

2) (a6, 0) =g if (o, 6, w) ¥ @,

3) (a,6,w) F ¢ - ¥ if (a,6,w) ¥ ¢ or (a,6,w) - |,

4) (a6, 0) F Kgp if (a’,8",@") v ¢ for each play (a’, 8, 0") €
P such that a =4 o’

(5) (a,6,w) + Agp when there is an action d € A such that for
each play (¢/,8',0’) € P, ifa ~4 a’ and §'(a) = d, then
(', 8, 0") F .

The satisfaction relation I in our semantics is a binary rela-
tion between a play and a formula. This approach is motivated
by the intended meaning of the modality A, which represents an
agent’s ability to perform an action leading to a specific outcome. A
play specifies a valid transition from an initial state to an outcome
through an action profile. The modality A expresses that, under
agent a’s cognition, the agent has an action d that results in the
outcome ¢ (see item (5) in the definition above). Therefore, a for-
mula is a statement about a play, with propositional variables also
representing statements about plays. Of course, such a statement
could refer to the initial state, an action profile, or an outcome.

In item (5), the action ¢’ (a) is a uniform action under agent a’s
cognition. It is effective in all initial states @’ such that ¢ ~4 «’.

Such a uniform strategy has been studied in several logical systems
where the focus was often the concept involving knowledge and
action [2, 16, 32, 33, 45]. Different from these systems, our logical
system mainly considers a uniform strategy for an agent’s cognition
to model the agent’s cognitive ability.

As discussed before, the knowledge operator K represents the ex
ante knowledge of an agent, as shown in item (4) of Definition 2,
where the indistinguishability relation is applied to initial states.
Moreover, for an intelligent agent to function effectively, it often
relies on foundational information, such as traffic rules, stored in
its knowledge base. The modality K also captures such knowledge,
which is independent of the agent’s actions.

4 AXIOMS AND THE SOUNDNESS

Our logical system contains all the propositional tautologies in
language ® and the following axioms.

(1) Truth: Kqe — o,

(2) Negative Introspection: =Ky — Kg—Kgo,

(3) K-Distributivity: Kq (¢ — V) — (Kgp — Kai),
(4) A-Distributivity: Kg(¢ — ¢¥) — (Age — Ag¥),
(5) Knowledge of Ability: Agp — KaAg¢.

(6) Ability: =A,L.

The Truth, the Negative Introspection, and the K- Distributivity
axioms are standard axioms from the epistemic logic S5. The A-
Distributivity axiom states that if an agent knows that ¢ —  and
the agent has a cognitive ability to provide information for the
action leading to ¢, then the agent has the ability to provide infor-
mation for the action leading to . Note that statement (2), which
we discussed in Section 1, is an instance of the A-Distributivity
axiom. The Knowledge of Ability axiom states that if an agent has
a cognitive ability to provide information for its action that leads
to an outcome, then the agent knows that it has such an ability.
Statement (1), which we discussed in Section 1, is an instance of
this axiom.

For the Ability axiom, recall that an autonomous agent may fail
to acquire information due to extreme circumstances, causing the
system to fail or terminate. In such cases, agents lose their cogni-
tive ability. Since we study cognitive ability, we do not consider
situations where the system terminates and an agent no longer has
the cognitive ability. This is captured in the Ability axiom. Note
that, by Definition 2 item (5), statement A, L means that there is
an action under the agent’s cognition that leads to the outcome
L. As 1 is unsatisfiable, statement A, L essentially indicates agent
a’s cognitive inability. Therefore, =A, L represents that the agent
possesses the cognitive ability.

Same as a belief modality B in [24], the modality A does not
have a truth axiom. Thus, Ag¢ may not imply ¢. Intuitively, this is
because an agent’s cognition is limited. For example, in the Tesla
accident where the car did not stop in front of the school bus stop
sign and struck a teenager, the Autopilot considered that it was safe
to drive and continued driving, denoted by Agys0 “it is safe to drive".
Unfortunately, it turned out that it was not safe to drive.

Note that modality A is not distributive, whereas a belief modality
B in [24] is, written as B4(¢ — ¥) — (Bge — Bgy). This is
because modality A is meant to capture the cognitive ability to
provide information about an action for an outcome rather than just



capturing an agent’s cognition. For example, consider the situation
when an agent has a cognitive ability to foresee that an action, say
dq, will lead to ¢ — ¢, and the agent also has the cognitive ability
to foresee that an action, say da, will lead to ¢. This does not mean
that the agent has the cognitive ability to foresee an action that will
lead to . This is because action d; may be different from action ds
and the agent may not have an action that would lead to 1.

We say that a formula ¢ € @ is a theorem of our logical system,
written as + ¢, if ¢ is derivable from the above axioms using the
Modus Ponens and the Necessitation inference rules:

ooy @
y Kag’

We write X + ¢ if a formula ¢ € @ is derivable from the theorems
of our logical system and an additional set of assumptions X C ®
using only the Modus Ponens inference rule. A set X is said to be
consistent if X ¥ L.

The soundness of propositional tautologies and of the Modus
Ponens and the Necessitation inference rules is straightforward. The
soundness of the Truth axiom, the Negative Introspection axiom,
and the K-Distributivity axiom is standard. Below we prove the
soundness of the axioms related to the modality A. Let ¢ € ® and
(a, 8, w) € P be aplay of a game (I,=,A, Q, ~, P, ).

LEmMA 4.1. If (a,6,w) + Kg(@ — ) and (@, 8, w) I+ Agp, then
(a,8,w) + Agy.

Proor. The assumption (&, §, ) I Kq(¢ — ), by Definition 2
item (4), implies that for each play (a1, 81, w1) such that a =, o/,
we have

(a1,01,01) F @ — ¢ 3)
The assumption (a, §, ) F Agz@, by Definition 2 item (5), implies
that there is an action d € A such that for each play (az, d2, w2) € P,

if @ ~q az and §2(a) = d, then (ag, 52, w2) I ¢. 4)

Consider an arbitrary play (a’,8’,w”) € P such that « ~, a’ and
8’ (a) = d. Then, (a’, 8, w’) I ¢ by statement (4). At the same time,
« =4 o’ by Definition 1 item 5(a). Thus, it follows from statement (3)
that (a’,8’,w”) + . Therefore, (, §, w) I+ Agy, by Definition 2
item (5). o

LEMMA 4.2. If (a,0,w) F Age, then (o, 0, w) IF KqAgqp.

PrRoOOF. Assumption (a, 8, w) - Agze implies that there is an
action dy € A such that for each play (a’, ', 0’) € P,

ifa ~q &’ and 8’ (a) = dy, then (a’, 8", 0")  ¢. (5)

Consider any play (a’,8’,w’) € P such that « =, «’. By Defini-
tion 2 item (4), it suffices to show that (a’,8’,w’) F Agz@. That
is, we need to show that there is an action d € A such that for
each play (¢”,8”,0"”) € P,if a’ ~; &’ and §”’(a) = d, then
(a’”,8”,0") I ¢. Let d be dy. Note that assumptions « =, a’ and
a’ ~q o' imply that @ ~, «”” by Definition 1 item 5(b). Then,
(a”,8”, ") I ¢ by statement (5). O

LEMMA 4.3. (a,6,w) ¥ AgL.

PRrROOF. Suppose that (@, 8, w) I+ AgL. Then, By Definition 2
item (5), there isan actiond € A such that for each play (a’, §’, w’) €

P,ifa ~, @’ and &’ (a) = d, then (a’,8’,w’) + L. However, con-
sider any play (a’,8’,w’) € P such that @ ~4 @’ and §’(a) =d. It
follows that (a’, §’, w”) ¥ L, which leads to a contradiction. O

Next, we list five lemmas that will be used later in the proof of
completeness. The proofs of the first three lemmas can be found
in the Appendix section. Lemma 4.4 is the well-known positive
introspection principle. Lemma 4.7 says that if an agent does not
have the cognitive ability to perform an action that leads to an
outcome, then the agent knows that he does not have such an
ability. For the Lindenbaum’s lemma (Lemma 4.8), the standard
proof applies (see, e.g. Mendelson [31, Proposition 2.14]).

LEmMMA 4.4. + Kgp — KgKgo.

LEMMA 4.5 (DEDUCTION). IfX, ¢ F ), thenX + ¢ — .
LEMMA 4.6. If o1 A -+ A ont ), then Kg@1, ..., Kapn FKaip.
LEmMMA 4.7. + =Aq0 — Kg—Age.

Proor. By the Knowledge of Ability axiom, F Agp — KgAge.
Thus, F =KzAgp — —Agp by the contrapositive. Hence, by the
Necessitation inference rule, F K4 (=KgAgp — —=Aq¢). Then, by
the Distributivity axiom and the Modus Ponens inference rule
F Kg=KgAgp — Kg=Age. Thus, F =KzAz9 — Kg=Age, by the
Negative Introspection axiom and the laws of propositional rea-
soning. Note that —“Agzp — —KgzA4¢ is the contrapositive of the
Truth axiom. Therefore, by the laws of propositional reasoning,
+ —|Aa(p = KaﬂAa(p. m}

LEMMA 4.8 (LINDENBAUM). Any consistent set of formulae can be
extended to a maximal consistent set of formulae.

5 COMPLETENESS

In this section, we prove the completeness of our logical system,
listed as Theorem 5.1 below.

THEOREM 5.1. IfX ¥ ¢, then there is a game and a play (@, 6, w)
in the game such that (a, 6, w) + y for each y € X and (a,d, w) ¥ ¢.

Towards the proof of this theorem, we will construct a game,
called the canonical game, such that a play in the game satisfies
all formulas in X, but does not satisfy formula ¢. We use the tuple
(I,=,A,Q,~, P, m) to denote the canonical game G. The following
definitions, Definition 3 to Definition 11, specify each component
of the canonical game G.

DEFINITION 3. The set of outcomes Q is the set of all maximal
consistent sets of formulae.

DEFINITION 4. For each w1, wy € Q, we say that w1 =4 w2 when,
foreach ¢ € @, if Kqp € w1, then Kgp € wy.

LEMMA 5.2. If w1 =q w2, then for each ¢ € ®, Kqp € w if and
only if Kqo € ws.

PRroOF. (=) By Definition 4, if Kz¢ € w1, then Kq¢ € ws.

(&) Suppose that K;¢ ¢ ©1. Then, -Kgz¢ € w1 because w; is
maximal. Thus, w1 F Kg—Kg¢ by the Negative Introspection axiom.
Hence, K;-Kgz¢ € w; since w; is maximal. Then, by Definition 4,
it follows from the assumption w1 =, w3 that K;—Kg¢ € w;. Thus,
w2 + =Kz by the Truth axiom. Therefore, =K,¢ € w2 because w;
is maximal. O



The next lemma directly follows from Lemma 5.2.
LEMMA 5.3. Relation =, is an equivalence relation.
DEFINITION 5. w1 =g w2 if w1 =q w2 foreverya € A.

The set I of initial states is the set of equivalence classes with
respect to the relation = 4.

DEFINITION 6. I == Q/=4.
LEMMA 5.4. Relation =, is well-defined on set I.

ProOF. Suppose that w1 =, wz. Consider any outcomes w] and
w} such that w1 =4 ] and wy =g w;. It suffices to prove that
w] =q ;. Note that K49 € w1 if and only if Ko¢ € w] by the
assumption w; =g a){, Definition 5, and Lemma 5.2. Similarly,
it follows from the assumption wy =4 wé that K¢ € w3 if and
only if K49 € wj. Since w1 =4 wa, we have K49 € w; if and only
if Kap € w2, again by Lemma 5.2. Thus, K¢ € o] if and only
if Kg¢ € wj by propositional reasoning. Therefore, 0] =4 wj, by
Definition 4. O

The next lemma directly follows from Lemma 5.4.

LEMMA 5.5. a =4 &’ if and only if w =4 w’, for any initial states
a,a’ €I and any outcomes w € a and v’ € &’.

Note that an initial state is an equivalence class of outcomes.
The next lemma shows that an agent maintains the same cognitive
ability in the outcomes that belong to the same initial state.

LEMMA 5.6. Agp € w ifand only if Aqgp € ’, for each v, w’ € Q
such that v =4 @’ and each ¢ € ®.

PRroOF. Since relation = is an equivalence relation by Lemma 5.3,
it suffices to show that if A9 € w, then Agp € @’. Assume
Aqp € . Then, by the Knowledge of Ability axiom, o + KgzAg¢.
Hence, K4Az¢ € @ because o is a maximal consistent set. Thus,
KaAqp € ’ by the statement w =, »’ and Lemma 5.2. Hence,
@’ + Ago by the Truth axiom and the Modus Ponens rule. There-
fore, Agp € w’ since @’ is a maximal consistent set. O

To define the cognitive relation ~ that satisfies the conditions
in item (5) of Definition 1, we must ensure that the relation ~, is a
subset of =,. Additionally, recall that an intelligent agent may lose
its cognitive ability in extreme circumstances, and that —=A, L indi-
cates that agent a retains cognitive ability. Therefore, the cognitive
relation only considers pairs of states where the agent possesses
cognitive ability, as outlined in the definition below.

DEFINITION 7. ~g:= {(w1,w2) | w1 =q w2 and —=AgL € w1}.

Definition 7 defines the cognition relation on the set of outcomes
and the relation ~ is a proper subset of the relation =, for any
agent a € A. This definition is used to define the cognition relation
on the set of initial states, as shown in the next definition.

DEFINITION 8. a1 ~q a2 if a1 =4 a2 and for each w1 € a1, there
is w2 € ay such that w1 ~q w3.

To show that the relation ~, on set I is well-defined, we need to
prove that it satisfies conditions 5(a) and 5(b) in Definition 1.

LEMMA 5.7. Relation ~, on set I satisfies item (5) of Definition 1.

Proor. We need to show that relation ~ satisfies both condition
(a) and condition (b) in item (5) of Definition 1.

Condition (a): ~4 C =4 holds true by Definition 7.

For condition (b), consider arbitrary initial states a1, a2, a3 € I.
Assume a1 =4 ap and g ~4 a3. It suffices to show a; ~4 as.

Assumption ap ~4 a3, by Definition 8, implies that ay =, «as3.
Then, by Lemma 5.5, Lemma 5.3, and the assumption a1 =, ag, we
have a1 =4 a3 (). Thus, to show a1 ~4 @3, by Definition 8, we
need to show that for each w1 € aj, there is w3 € a3 such that
w1 ~q W3.

Consider any w; € a7 and any w3 € a3. Then, statement ()
implies w1 =4 w3, by Lemma 5.5. Thus, by Definition 7, it suffices
to show that A, L € w;.

Consider any wy € az. Assumption az ~4 a3, by Definition 8
and Definition 7, implies that =A; L € w;. Moreover, assumption
a1 =q ay implies w1 =4 w2 by Lemma 5.5. Thus, -A,L € w1 by
Lemma 5.6. Therefore, the desired is true. m]

The set of actions is defined to be the set of all formulae.
DEeFINITION 9. A = .

The set P of valid plays is defined in the next definition. Intu-
itively, from any initial state, agents take actions that lead to an
outcome. By Definition 2 item (5), an agent’s ability to provide
information about an action for the outcome ¢ is interpreted as the
agent having an action such that, under the agent’s cognition, this
action will lead to ¢. As a result, ¢ should hold true in the outcome.
In the canonical model, we use ¢ itself as the agent’s action, see
Definition 10 below.

Next, recall that —=A,L represents that the agent possesses the
cognitive ability. When an autonomous agent loses its cognitive
ability, the system may terminate. Since a valid play represents a
system transition, it should not include situations when system
fails and an agent no longer has its cognitive ability. Thus, =A, L
is in the outcome for valid plays.

In Definition 6, initial states are defined to be the equivalence
classes with respect to the relation = 4. This is to ensure that con-
ditions required for valid plays work for any agent in set A. The
next definition specifies the set of valid plays.

DEFINITION 10. The set P C I x A7 x Q consists of all triples
(@, 8, w) such that v € a, =AgzL € w for each a € A, and for each
Agp € w, if6(a) = ¢, then ¢ € w.

DerFINITION 11. 7(p) = {(@, 8, w) € P|p € w} for any atomic
proposition p.

This concludes the definition of the canonical game G. The next
lemma shows that given any outcome that contains —=A,.L, a play
can always be constructed from the outcome.

LEMMA 5.8. For any outcome w € Q where ~A,L € w, there is
an initial state a € I and a complete action profile § € A such that
(a,6,w) € P.

PRrROOF. Let a be the equivalence class of w with respect to rela-
tion = 4. Thus, w € a. Let §(a) = T for each agent a € A. Consider
any formula Ag¢ € w such that §(a) = ¢. By Definition 10 and the
assumption —=A, L € w, it suffices to show that ¢ € w. Indeed, since



d(a) = T, by the assumption §(a) = ¢, we have ¢ = T. Therefore,
¢ € w because set © is maximal. O

In proving the completeness theorem, a key step of the proof
is an induction lemma, so-called the “truth lemma" (Lemma 5.13
in this paper). This lemma is proven by induction on the structure
complexity of the language. The following four lemmas address the
sub-cases within the induction step for Lemma 5.13, specifically for
the two modalities: the knowledge modality K and the cognitive
ability modality A.

LEMMA 5.9. For any play (a,6,w) € P, if Kqp € w, then ¢ € o’
foreach play (a’,8', ") € P such that a =4 o’.

ProOF. By Definition 10, assumption («, §, ) € P implies w € a.
Consider an arbitrary play (a’, 8", w’) € P such that @ =4 a’. Then,
@’ € a’ by Definition 10. By Lemma 5.5 and assumption & =4 o/, we
have w =, @’. Thus, K¢ € »’ by Definition 4 and the assumption
Ka¢ € w of the lemma. Thus, o’ + ¢ by the Truth axiom and the
Modus Ponens rule. Therefore, ¢ € «’ because w’ is maximal by
Definition 3. ]

LEMMA 5.10. For any play (a, 8, w) € P, if Kqap ¢ w, then there
exists a play (¢/,8’,0") € P suchthata =4 &’ and ¢ ¢ w’.

Proor. Consider set X = {—=¢} U{y|Kax € w}.
Cramm 1. Set X is consistent.
ProoF oF CLAIM. Suppose the opposite. Then, there are formulas

Kax1,Kaxz,....Kaxn € @ (6)
such that y; A ya2 A+ <A yn F @. Then, Kg y1, Kaxa, - - ., Kayn F Kgo,
by Lemma 4.6. Thus, by statement (6), we have v + Kg¢, which
contradicts the assumption that Kq¢ ¢ @ because set w is a maximal
consistent set. Therefore, set X is consistent. P

Let @’ be a maximal consistent extension of set X. By Lemma 4.8,
w’ exists. Let @’ be the equivalence class of @’. Thus, »’ € &’.

CLAIM 2. 0 =4 0.

Proor oF Craim. By Definition 4, we need to prove that for each
T € @, if Kyr € w, then Kgr € w’. Suppose K47 € . Then,
o + KgKq7r by Lemma 4.4 and the Modus Ponens rule. Hence,
KqKaT € w because w is maximal. Thus, K,7 € X C «’, by the
definition of set X and the choice of w’. X

Next, we define the complete action profile §’. For each agent
beA,let
8’ (b)=T. ™)

Cramm 3. (a’,8’,w") € P.

Proor of Craim. First, note that w’ € «’. Next, we show that
-AqLl € w’. Indeed, assumption (e, §, w) € P implies =A; L € w by
Definition 10. Thus, =A; L € ' by Claim 2 and Lemma 5.6. Finally,
consider any A, € o’ such that §’(b) = ¢. By Definition 10, it suf-
fices to show that € w’. Indeed, 6’ (b) = T by equation (7). Hence,
¥ = 8’(b) = T. Therefore, ¥ € @’ because set w’ is maximal. X

To complete the proof, note that « =, ¢’ by Lemma 5.5 and
Claim 2. Also notice =¢ € X C w’ by the definition of set X and

the choice of set w’. Therefore, ¢ ¢ w’ because w’ is a maximal
consistent set. [m}

LEMMA 5.11. For any play (a, 8, w) € P and Aqp € w, there is an
action d € A such that for each play (a’,8’, w’) € P where a ~4 o’
and §’(a) = d, we have ¢ € w’.

Proor. Let d = ¢. Consider any play (a’, 8, »’) € P such that
a ~q @’ and §’(a) = d. Then, a =, @’ by Definition 8. By Defini-
tion 10, assumption (&', §’, w’) € P implies that w’ € @’. Similarly,
assumption (a,d,w) € P implies that w € a. Then, it follows
from Lemma 5.5 that @ =, «’. Thus, assumption Az¢ € w, by
Lemma 5.6, implies Ay¢ € ’. Therefore, ¢ € w’ by the assump-
tion (a’,8’,w’") € P, the assumption ¢’ (a) = d = ¢, and Defini-
tion 10. m]

LEMMA 5.12. For any play (a,8,w) € P, if Aqp ¢ «, then for
each d € A, there exists a play (a’,8’,w") € P such that a ~4 &/,
6 (a)=d,and ¢ ¢ w’.

Proor. Consider set
X ={=p} U{y| Ay € 0,d =y} U{x|Kay € 0}.
CrLAm 4. Set X is consistent.
ProOF OF CLAIM. Suppose the opposite. Then there are formulas

Aat, Kax1,Kaxz, ... Kayn € © (8)
such that d=1y 9)
and UAYIA--Axnto.

By Lemma 4.5, y1 A --+ A yn + ¥ — ¢. Then, by Lemma 4.6,
Kaxis- - Kaxn F Ka(¢ = ¢). By the A-Distributivity axiom and
the Modus Ponens rule, Kg x1,...,Kgxn + Aqy — Age. Hence,
Kaxi, Kaxz, - Kaxn Aa¥ + Aggp, by the Modus Ponens inference
rule. Thus, w F Age, by statement (8). This contradicts the as-
sumption that Az¢ ¢ w because set w is a maximal consistent set.
Therefore, set X is consistent. 4

Let w’ be a maximal consistent extension of set X. By Lemma 4.8,
@' exists. Let a’ be the equivalence class of w’. Thus, v’ € a’.

CLAIM 5. 0 =4 0.

Proor oF CraiM. By Definition 4, it suffices to show that if K,z € w
then K7 € w’, for each 7 € ®. Assume that K;7 € . Then,
o + KgKg7, by Lemma 4.4. Since w is maximal, K;K,7 € . Thus,
by the definition of set X and the choice of w’, Kzt € X C 0. ®

CLAIM 6. a ~g o'

Proor of Craim. First, note that « =, a’ by Lemma 5.5 and
Claim 5. Then, by Definition 8, it suffices to show that for each
w1 € a, there is wy € a’ such that w; ~4 wy. Choose an arbitrary
@1 € a. For any wy € o', we have w1 =, wp by Lemma 5.5 and the
statement a =, a’. Then, by Definition 7, it suffices to show that
—AgL € w1. Note that assumption (a, §, w) € P implies that w € «
and A, L € w by Definition 10. Thus, v =, w1 by Definition 6
and the assumption w; € a. Hence, -A;L € w1 by Lemma 5.6. ®



Next, we define the complete action profile §’. For each agent
beA,let
d, ifb=a,
5'(b) = { no=a (10)

T, otherwise.
Cramm 7. (a’,8’,0") € P.

ProoF oF Craim. First, note that w” € a’ by the definition of a’.
Also note that “A;L € w by the assumption (a,d,w) € P and
Definition 10. Thus, =A, L € o’ by Claim 5 and Lemma 5.6. Finally,
consider any A1) € »’ such that §"(b) = ¢. It suffices to show that
¥ € @’ by Definition 10.

Case I: b = a. Then Agy € w by the assumption A,y € w’, the
assumption b = a of the case, Claim 5, and Lemma 5.6. At the same
time, d = ¢ by equation (9). Therefore, we have y € X C «w’ by the
definition of X and choice of w’.

CaseIl: b # a. Then, §’(b) = T by equation (10). Hence, = 6§’ (b) =
T. Therefore, € w’ because set ®’ is maximal. X

To finish the proof, notice that « ~; @’ by Claim 6. Moreover,
—p € X C . Thus, ¢ ¢ o’ since w’ is consistent. m]

The next lemma is the truth lemma in our completeness proof.

LEMMA 5.13. (a,6,w) I+ ¢ ifand only if p € w.

Proor. We prove the lemma by induction on the complexity of
formula ¢. If ¢ is a propositional variable, then the lemma follows
from item (1) of Definition 2 and Definition 11. If formula ¢ is an
implication or a negation, then the lemma follows from items (2)
or (3) of Definition 2 and the fact that w is a maximal consistent set
in the standard way.

Suppose that formula ¢ is of the form Kg¢.

(<) Assume Kg¢ € w. Consider any (a’,6”,w") € P such that
a =4 a'. Then, by Lemma 5.9, we have ¢ € «’. Thus, by the
induction hypothesis, (a’, 8", 0’) I+ ¢. Therefore, (@, 5, @) + Kg¢
by Definition 2 item (4).

(=) Assume K¢ ¢ w. Then by Lemma 5.10, there is a play
(a’,8’,w’") € Psuch that @ =; o’ and ¢ ¢ «’. Thus, by the in-
duction hypothesis, (¢’,8’, @) ¥ ¢. Therefore, (o, §, w) ¥ Kg¢ by
Definition 2 item (4).

Suppose that formula ¢ is of the form Ag¢.

(&) Assume A,z € w. Then, by Lemma 5.11, there is an action
d € A such that for each play (a’,8’,w’) € P,ifa ~4 a’ and §’(a) =
d, then ¢ € w’. Thus, by the induction hypothesis, (a’, 8", ®’) I ¢.
Therefore, (a, 5, w) F Age by Definition 2 item (5).

(=) Let Agp ¢ w. Then, =Az¢p € w by the maximality of set w.
Hence, by Lemma 5.12, for each d € A, thereisaplay (a’,6’,w’) € P
such that « ~; @', ’(a) = d, and ~¢ € «’. Thus ¢ ¢ o’ by
the consistency of set w’. Hence, by the induction hypothesis,
(a’,8',0") ¥ ¢. Thus, (a, 5, ©) ¥ Age by Definition 2 item (5). O

To finish the proof of completeness, assume that X ¥ ¢. We need
to show that there is a game and a play («, 8, ) in the game such
that (a,0,w) I+ y for each y € X and (a, 8, w) ¥ ¢. Since X ¥ ¢,
the set X U {—¢} is consistent. By Lemma 4.8, there is a maximal
consistent extension wg of the set X U {—¢p}.

Consider the canonical game G = (I, {=g}qec a1, A @, {~a}aca,
P, ). By Lemma 5.3, relation =4 in the game G satisfies the condi-
tion in item (2) of Definition 1. By Lemma 5.7, relation ~, satisfies

conditions in item (5) of Definition 1. Thus, the canonical game G
is indeed a game defined in Definition 1.

Note that wg € Q by Definition 3. Then, wy + =A4.L, by the
Ability axiom. Thus, =A,L € wo, since wy is a maximal consistent
set. Hence, by Lemma 5.8, there is an initial state &g and a complete
action profile 8y such that («g, o, wo) € P. Since X U {=¢} C wo,
by Lemma 5.13, we have (ao, do, wo) I+ y for each y € X C wp and
(0{0, 5(), a)o) = —@. Thus, (a(), 50, (/)()) ¥ .

6 CONCLUSION AND FUTURE WORK

In this paper, we explored the cognitive ability of intelligent agents
and introduced a logical system to reason about the interplay be-
tween knowledge and cognitive ability of intelligent agents. In our
framework, an agent’s cognitive ability refers to its ability to per-
form an action leading to specific outcomes under its cognition. We
argue that an agent’s cognition differs from its belief and that must
remain consistent with its knowledge. Finally, we provided a sound
and complete axiomatization for our proposed system.

Our work is intended to be a foundational step toward in-depth
studies of cognitive ability of intelligent agents that can be po-
tentially used to recognize hazards, communicate with human op-
erators before an unfavorable outcome, and assist retrospective
analysis afterwards, thus enhancing safety and reliability of such
systems. We do not consider complex structures of autonomous
agents and their environments, such as the limited resources neces-
sary for an agent to achieve its goal.

There are potentially many directions to extend the current
work. For example, one direction is to extend the current work
to account for dynamic environments where the knowledge base
evolves through interactions with the environment. The history of
actions taken need to be considered and the assumption of perfect
recall for intelligent agents also is reasonable.

Another direction is to consider the collaboration of multiple
agents, for example, the collaboration between the self-driving car
and the backup driver. Traditionally, the concept of a coalition’s
knowledge extends individual knowledge to a group of agents. This
includes distributed knowledge where members share their knowl-
edge with each other, common knowledge, and group knowledge
where each member individually knows the same thing. However,
these notions of knowledge do not align well with the dynamics
of collaboration between a self-driving car and a backup driver.
Consider a situation when one agent recognizes a potential risk of
collision. Then an action should be taken immediately to prevent
the collision. This highlights the need for a new type of coalitional
knowledge and effective collaboration may require a more nuanced
understanding of knowledge and cognition ability.
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APPENDIX
Lemma 4.4. + Kz — KgKge.

Proor. Formula K;=Kgz¢p — =Kg¢ is an instance of the Truth
axiom. Thus, F Kg¢ — =K;—Kg¢ by contraposition. Hence, consid-
ering the following instance of the Negative Introspection axiom:
=Kg=Kgap — Kg=Kgz=Kg¢, we have

F Kap — Kg=Kg=Kge. (11)

At the same time, =Kg¢ — Kgz—=Kg¢ is an instance of the Nega-
tive Introspection axiom. Thus, v =K;=Kz¢ — Kgz¢ by the law
of contrapositive in the propositional logic. Hence, by the Ne-
cessitation inference rule, + Kg(=Ky=Kz¢ — Kge). Thus, by
the Distributivity axiom and the Modus Ponens inference rule,
F Kg—=Kg=Kap — KgKge. The latter, together with statement (11),
implies the statement of the lemma by propositional reasoning. O

Lemma4.5. If X, ¢+, then X + ¢ — ¢.

Proor. Suppose that sequence y1,. ..,y is a proof from set
X U{p} and the theorems of our logical system that uses the Modus
Ponens inference rule only. In other words, for each k < n, either

(1) + ¢y, or

(2) Y € X, or

(3) Y is equal to ¢, or

(4) there are i, j < k such that formula ¢/; is equal to ¥; — V.
It suffices to show that X + ¢ — . for each k < n. We prove
this by induction on k through considering the four cases above
separately.

Case 1: + §p.. Note that 3 — (¢ — i) is a propositional tautol-
ogy, and thus, is an axiom of our logical system. Hence, - ¢ — ¥
by the Modus Ponens inference rule. Therefore, X + ¢ — .
Case 2: ;. € X. Note again that . — (¢ — Vi) is a propositional
tautology, and thus, is an axiom of our logical system. Therefore,
by the Modus Ponens inference rule, X + ¢ — .

Case 3: formula i/, is equal to ¢. Thus, ¢ — ¥ is a propositional
tautology. Therefore, X + ¢ — .

Case 4: formula ; is equal to 1); — . for some i, j < k. Thus, by
the induction hypothesis, X + ¢ — ¢ and X + ¢ — (¥i — ¥).
Note that formula (¢ — ¢i) — ((¢ = (i = ¥i)) = (¢ = ¥i))
is a propositional tautology. Therefore, X + ¢ — iy by applying
the Modus Ponens inference rule twice. O

Lemma 4.6. If o1 A -+ A pn+, then Kgo1, ..., Kgon FKgy.

ProoF. Assumption ¢1 A - -+ A ¢+, by Lemma 4.5 applied n
times, implies that - 91 — (92 — ... (pp — ¢)...). Thus, by the
Necessitation inference rule,

FKa(pr = (92 > ... (pn > ¥)...)).
Hence, by the K-Distributivity axiom and the Modus Ponens rule,
FKapr = Ka(pa = ... (pn = ¥) ..).
Then, again by the Modus Ponens rule,
Kag1 - Ka(pz = ... (gn = ¥) ..).

Therefore, K491, . .., Kqpn + Kgi by applying the previous steps
(n — 1) more times. ]
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