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ABSTRACT
Along with the convenience brought by the increasing usage of

autonomous systems, unexpected accidents happened. These ac-

cidents emphasize the need for autonomous systems to possess

the ability to recognize potential hazards, effectively communi-

cate these hazards to human operators, and facilitate retrospective

analyses. This ability, including recognition, prejudgment, post-

analysis, and reasoning, falls within the realm of cognitive ability,

which is important in improving the safety and outcomes in the

decision-making process of such systems. In this paper, we present

a foundational step toward addressing the safety challenges involv-

ing the cognitive ability of artificial agents. We study the interplay

between knowledge and the cognitive ability of intelligent agents.

The main technical result is a sound and complete bimodal logical

system that describes the interplay between the knowledge and

cognitive ability modalities.
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1 INTRODUCTION
Self-driving cars are gradually becoming part of people’s everyday

lives. However, safety concerns are rising along with the technol-

ogy advancements. Designing self-driving systems equipped with

the ability to provide safe and reliable driving experiences is a

complicated task. A federal government’s top auto-safety regulator

disclosed in 2022 that “nearly 400 crashes in the United States in 10

months involved cars using advanced driver-assistance technolo-

gies" [6]. Past accidents show that some autonomous systems are

still questioned to be flawed. For example, Autopilot, Tesla’s driver-

assistance system, was involved in “three fatal crashes occurred

in a 51-day span" in the summer of 2022 with a similar pattern:

“a person driving a Tesla in the early morning hours with Autopi-

lot active strikes a motorcycle" [29]. These crashes raise concerns

among motorcycle advocates. They worry that Autopilot may be in-

competent in fully recognizing motorcycles while lulling its drivers

into a false “sense of complacency and inattentiveness” [29].

This false sense of security in drivers, believing their autonomous

cars drive by themselves, also led to other accidents unrelated to

motorcycles. For instance, in 2020, Rafaela Vasquez, the backup

driver of an Uber test vehicle operating in autonomous mode, was

charged with negligent homicide after the Uber vehicle struck and

killed a pedestrian in Arizona in 2018 [28]. In 2023, in San Francisco,

a Tesla Model Y, allegedly in self-driving mode, failed to slow down

while a school bus displayed its stop sign. Consequently, a teenager

was struck and thrown into the windshield, flew into the air, and

landed in the middle of the road [41].

These incidents highlight significant issues in the current ca-

pabilities of self-driving technology. Autonomous cars are usually

equipped with advanced technologies to assist in driving and avoid

collisions. These advanced technologies provide self-driving sys-

tems with cognitive abilities to acquire information (i.e., the de-

tected objects or other cars’ speed and inertia), reason about the

obtained information, and make decisions. Unfortunately, accidents

still happen. How can self-driving systems be designed to better pre-

vent accidents and reduce crashes? Let us look into these accidents

more closely.

The 2018 Uber accident accident occurred when the victim, 49-

year-old Elaine Herzberg, was slowlywalkingwith a bicycle to cross

a major road. The autonomous car did not slow down or change

its course to avoid the pedestrian, resulting in a fatal crash [39]. It

was reported [5] that the self-driving system indeed detected the

pedestrian with her bicycle six seconds before the crash; however, it

classified her as an unknown object. Unable to correctly recognize

the pedestrian and her bicycle, the self-driving system did not take

any action to actively avoid the pedestrian. When the system finally

determined that emergency braking was required, it was only 1.3

seconds before the impact, too late to avoid the crash. From the

report [28], the self-driving system relied on the driver to intervene

and take action in emergencies, but it was not designed to alert the

driver. The driver, Rafaela Vasquez, without receiving any warning,

was watching television on her smartphone when the pedestrian

was struck by the car, directly causing the pedestrian’s death.

In this accident, Rafaela Vasquez was charged with negligent

homicide. However, if the system had created a warning (e.g., a

sound with a message on the display screen) right after it detected

the pedestrian, the driver might have had enough time to react to

prevent the tragedy. Even when a self-driving system is uncertain

about an undesirable outcome, it should still warn the driver re-

garding any detected "unknown" information instead of assuming

it had permission to proceed, particularly in situations where dri-

ver intervention may be required. Just as Floridi and Sanders [12]

argued that one of the guidelines for a moral intelligent agent is in-

teractivity – the ability to respond to stimulus, a reliable self-driving
system should have the ability to provide warnings when foreseeing a
potentially undesirable outcome.

For self-driving systems to have such an ability, they must not

only be aware of the tasks they are performing, such as accelerating

or slowing down, but also of the contextual conditions that dictate

how these tasks should be executed. For instance, a self-driving car

must know that it needs to stop when approaching a school bus

displaying a stop sign, but not when approaching a temporarily

parked Amazon truck. Thus, it is critical that the system should
know its own capabilities. Let 𝜒 represent the statement “hitting an

obstacle", the modal formula A𝑎𝑢𝑡𝑜 𝜒 denote the statement that “the

autonomous car has the ability to foresee that the current action

leads to the outcome 𝜒 ," and K𝑎𝑢𝑡𝑜 denote “the autonomous car
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knows that". Then, the following formula holds:

A𝑎𝑢𝑡𝑜 𝜒 → K𝑎𝑢𝑡𝑜A𝑎𝑢𝑡𝑜 𝜒 (1)

Once the system concludes A𝑎𝑢𝑡𝑜 𝜒 , it knows A𝑎𝑢𝑡𝑜 𝜒 and should

alert the driver about 𝜒 . Note that such communication should

occur before the potential accident to serve as a warning. Thus, the

knowledge modality K is the ex ante knowledge, i.e., the agent’s
knowledge before the event happens.

Another important feature that self-driving systems should have

is the ability to provide information for retrospective analysis. In
the 2023 Tesla accident, it was unclear why the self-driving Tesla

never slowed down while the school bus displayed its stop sign.

Similarly, the recurring pattern of Autopilot hittingmotorcycles also

lacked a clear explanation. As autonomous agents are rational, they

are designed to take the best possible action given any situation.

However, if the “best" possible action results in an accident, it

often means the system missed certain critical information and

made a wrong decision, leading to an unfavorable outcome. To

prevent similar outcomes in the future, it is critical for a self-driving

system to have the ability to provide information for an undesirable

outcome. This retrospective analysis can help designers identify

and rectify the underlying issues, thereby enhancing the safety and

reliability of the system.

Let𝜑 represent “pedestrian is hit by a car",𝜓 represent “car keeps

driving” and modality A represent “have the ability to provide infor-

mation/explain/conclude". Normally, when a pedestrian is crossing

the road, the autonomous car knows that if the car keeps driving,

it will hit the pedestrian. This is represented by K𝑎𝑢𝑡𝑜 (𝜓 → 𝜑).
Yet, in the 2023 Tesla case, despite knowing that driving (𝜓 ) would

lead to hitting a pedestrian (𝜑), the car kept driving. This implies

that the Tesla system considered the situation safe. Thus, if the

autonomous car has the ability to provide an explanation for its

actions (A𝑎𝑢𝑡𝑜𝜓 ), then it must also be able to provide an explana-

tion for the consequences of those actions (A𝑎𝑢𝑡𝑜𝜑). The following
logical expression formalizes this relationship:

K𝑎𝑢𝑡𝑜 (𝜓 → 𝜑) → (A𝑎𝑢𝑡𝑜𝜓 → A𝑎𝑢𝑡𝑜𝜑) (2)

According to Tesla’s manual [27], drivers have the option to en-

able a feature in the Autopilot of Model Y, the same model involved

in this accident, which allows the car to automatically stop for red

lights or stop signs. It remains unclear whether this feature was

enabled in the vehicle at the time of the incident. If it was not en-

abled, the system should be designed with the ability of providing

warnings to the drivers, enhancing the safety and reliability.

On the other hand, consider a situation when the feature for

detecting red lights or stop signs is enabled. If the Autopilot does

not recognize any red light or stop sign, then the car will keep

driving. Let 𝜓1 denote “no red light or stop sign is detected" and

𝜓2 denote “the feature is on". Recall that 𝜓 represents “car keeps

driving". Normally, cars can keep driving when there is no red light

or a stop sign detected while the feature is on. If the autonomous

car has this knowledge, then its ability to provide an explanation

for why no red light or stop sign is detected while the feature is

on implies its ability to provide an explanation for keeping driving.

This can be expressed as:

K𝑎𝑢𝑡𝑜 (𝜓1 ∧𝜓2 → 𝜓 ) → (A𝑎𝑢𝑡𝑜 (𝜓1 ∧𝜓2) → A𝑎𝑢𝑡𝑜𝜓 )

In general, it is reasonable to assume that an autonomous car has the

knowledge that it can keep driving when there is no red light or stop

sign is detected while the feature is on. Thus, if the Autopilot has

the ability to provide an explanation for not detecting the stop sign

of the school bus while the detection feature is on (A𝑎𝑢𝑡𝑜 (𝜓1 ∧𝜓2)),
then it has the ability to provide an explanation for the car to

keep driving (A𝑎𝑢𝑡𝑜𝜓 ), which led to the teenager being struck. By

analyzing the system’s ability to explain its actions, developers can

identify that a self-driving car may not be able to recognize a stop

sign on a school bus.

To summarize, it is crucial for autonomous systems to possess

the ability to recognize potential hazards, effectively communicate

these hazards to the driver, and facilitate retrospective analyses

to enhance safety and reliability. This ability–including recogni-

tion, prejudgment, post-analysis, and reasoning–falls under the

domain of the cognitive ability. Note that autonomous agents are

built on complex architectures, consisting of separate modules for

perception, data management, legislative requirements, and more.

For example, a comprehensive analysis of communication with the

human operator would also need to account for human factors such

as the operator’s awareness, workload, and attention. Our focus,

however, is to study the fundamental properties of the interplay

between cognitive ability and knowledge. A detailed analysis of

the practical aspects of cognitive ability is beyond the scope of this

paper. Our technical contribution is a sound and complete logical

system for reasoning about the interplay between cognitive ability

and knowledge.

The rest of the article is organized as follows. In Section 2, we

discuss the related work and how we position our work in the

literature. In Section 3, we introduce the syntax and the semantics

of our logical system. Section 4 provides a list of axioms of the

system and the proofs of their soundness. The completeness proof

is presented in Section 5. Finally, in Section 6 we conclude.

2 LITERATURE
The concept of ability has been a topic of longstanding philosoph-

ical debate. Van Inwagen [46] argued that ability is a power that

connects an agent to an action. Reid [36] suggested that ability

shares similarities with the traditional notion of active powers,

which involve the will. Ryle [38] linked the concept of ability to

the idea of knowing how to perform an action, while Stanley and

Williamson [43] contended that knowing-how is essentially a form

of knowing-that. Kasirzadeh and McGeer [19] and Mele [30] distin-

guished between two types of ability: specific and general. Specific

ability refers to the capacity of an agent to perform an action when

all necessary conditions are met, whereas general ability refers to

the capacity to perform an action even when not all conditions

are favorable. Robb [37] explored how to integrate intelligent pow-

ers—such as skills or talents—into the account of ability, noting that

these powers are linked to practical intelligence.

Few researchers have explored cognitive ability. Hernández-

Orallo and Dowe [15] identified key differences between the cog-

nitive abilities of animals and machines: animals possess innate

cognitive abilities, while machines’ abilities are tied to interactive

systems, with actions based on prior observations. Their study in-

troduced the concept of potential cognitive ability, defined as "how

XZ



quickly and likely the process of acquiring the ability is." They mea-

sured various machine characteristics and analyzed relationships

between certain potential abilities, but did not address knowledge.

Konek [20] took a quantitative approach, investigating probabilistic

knowledge and cognitive abilities, and argued that cognitive ability

involves reasoning about how evidence supports or undermines cre-

dences. Unlike both studies, our research explores the relationship

between knowledge and cognitive ability, using a logical framework

to formalize and reason about their interplay.

Pritchard [35] offered a philosophical discussion on the relation-

ship between an agent’s knowledge and cognitive ability, arguing

that an agent can acquire knowledge through its cognitive abil-

ities. Our study, in addition to being grounded in logic, differs

from Pritchard’s by focusing especially on the cognitive abilities of

intelligent agents. In our approach, agents can not only acquire per-

ceived knowledge as situations change but also possess predefined

knowledge, such as road signs or maps.

Our definition of cognitive ability includes the capacity to pro-

vide information for retrospective analysis, which necessitates that

intelligent agents possess the ability to offer explanations. The

study of an intelligent system’s ability to provide information or ex-

planations for its actions dates back more than forty years [40, 44],

to when expert systems were developed to explain why certain

actions were taken. In [40], the ability to explain was achieved

using production rules that encoded domain-specific judgmental

knowledge, linking situations to actions. To explain the system’s

actions, it was required that the explanation system understand

how or why certain rules were applied and maintain a comprehen-

sive record of specific actions taken. This requirement is similar to

our requirement that an intelligent agent should also know its own

capabilities, as formalized in statement (1).

To formally define the concept of ability, some researchers have

employed possible worlds/states semantics [9, 42]. A widely ac-

cepted view is that an agent possesses an ability if the agent per-

forms the action in some possible world [42]. Another popular

approach to the semantics of ability comes from a linguistic per-

spective [21–23], where possible worlds semantics is extended with

contextual factors to analyze abilities within complete assertions.

Many logical systems have explored the interaction between

ability and action. Alechina et al. [3] considered the situationswhere

agents take actions under limited resources to achieve their goal.

They extended coalition logic with resource bounds to describe both

single-step strategies and multi-step strategies and gave a sound

and complete axiomatization of the logic. Goranko [13] explored

the intersection of coalition logic and alternating temporal logic

(ATL) and provided a complete axiomatization. This work embedded

coalition logic into ATL so that agents can coordinate strategies

with time to achieve goals. Other works include STIT ("seeing to it

that") logic, introduced by Horty and Belnap [18] and axiomatized

first by Xu [47] and later by Balbiani et al. [4], as well as agency

and deontic logic by Horty [17]. Temporal STIT logic was explored

by Lorini [25], and the epistemic logic of blameworthiness was

developed by Naumov and Tao [34]. Other contributions, such as

those by Abarca and Broersen [1], Broersen [7, 8], focus on "seeing

to it that" or responsibility-related concepts. However, none of

these works considers the cognitive ability to provide information

about actions that lead to specific outcomes, an essential aspect for

enhancing the safety and reliability of intelligent agents.

Building on this line of research, we formally define cognitive

ability as the ability of an agent, through its cognition, to perform

an action leading to specific outcomes. Unlike previous work, we

base cognitive ability on cognitive relations formed through infor-

mation acquisition across possible states. Prior research [20, 35] has

shown a strong connection between cognitive ability and knowl-

edge, emphasizing the need to study their interaction for improving

the safety and reliability of autonomous systems. To the best of

our knowledge, we are the first to formalize a logical system that

integrates both knowledge and cognitive ability, proposing a sound

and complete system to reason about their interplay.

3 THE LANGUAGE
In this section, we introduce the formal syntax and semantics of

our logical system. We assume a fixed set of propositional variables

and a fixed set of agents A. The language Φ of our logical system

is defined by the grammar: for each 𝑎 ∈ A,

𝜑 := 𝑝 | ¬𝜑 | 𝜑 → 𝜑 | K𝑎𝜑 | A𝑎𝜑 .

We assume that the constants ⊤ and ⊥ as well as the Boolean

connective ∧ are defined in the standard way.

To interpret modality A, which represents the ability of an agent,

under its cognition, to perform an action leading to an outcome, we

define a set 𝐼 of initial states, a set Δ of actions, a set Ω of outcomes,

and a cognition relation ∼𝑎 for each agent 𝑎 ∈ A in our model. To

interpret modality K, following the epistemic logic S5, we use an

equivalence relation ≡𝑎 for each agent 𝑎 ∈ A. Recall that modality

K represents the ex ante knowledge of an agent (see Section 1).

Thus, relation ≡𝑎 is applied on set 𝐼 . We refer to our modal as a

game because we focus on one-shot games. Since not all transitions

from an initial state to an outcome via an action are valid, we define

a set 𝑃 of valid transitions, called plays. Additionally, the function
𝜋 is used to interpret the propositional variables, mapping each

propositional variable 𝑝 into a set of plays where 𝑝 is true.

For any set Δ of actions, we use ΔA
to denote the set of all

functions from setA to set Δ, which represents the set of all action

profiles. The formal definition of a game is as follows.

Definition 1. A tuple (𝐼 ,≡,Δ,Ω,∼, 𝑃, 𝜋) is called a game, where
(1) 𝐼 is a nonempty set of “initial states”,
(2) ≡𝑎 is an “indistinguishability” equivalence relation on the set

𝐼 for each agent 𝑎 ∈ A,
(3) Δ is a nonempty set of “actions",
(4) Ω is a nonempty set of “outcomes”,
(5) ∼𝑎 is a binary relation on set 𝐼 for agent 𝑎 ∈ A such that
(a) ∼𝑎 ⊆ ≡𝑎 ,
(b) for each initial states𝛼, 𝛼 ′, 𝛼 ′′ ∈ 𝐼 , if𝛼 ≡𝑎 𝛼 ′ and𝛼 ′ ∼𝑎 𝛼 ′′,

then 𝛼 ∼𝑎 𝛼 ′′.
(6) 𝑃 is an arbitrary set of tuples (𝛼, 𝛿, 𝜔) ∈ 𝐼 × ΔA × Ω which

we call the set of “plays",
(7) 𝜋 (𝑝) ⊆ 𝑃 for each propositional variable 𝑝 .

As artificial agents are designed to be rational, to model the

interplay between an agent’s knowledge and cognitive ability, we

require that an agent’s cognition and knowledge be consistent. For

example, if an agent knows that the sign is a stop sign, the agent



should not recognize it as some other sign such as a no-entry sign.

Such consistency is specified in Definition 1 item 5(a) and item 5(b).

Note that the relationship between the cognition relation and the

equivalence relation for knowledge defined in item (5) resembles

the relationship between the belief relation and the equivalence

relation for knowledge defined by [24]. This is because one’s cogni-

tion is tightly related to one’s belief. However, cognition and belief

are not the same concepts. Belief is about the states of a mind while

cognition is the process of acquiring information. For autonomous

agents, such a process is often through sensors, which can some-

times fail. For example, a Google Nest Doorbell will fail to recognize

a delivery person in cold weather (when the temperature drops

below −4◦F) [14]. Thus, different from the belief relation in [24],

our cognition relation need not be serial.

Intuitively, cognition in ourworkmay sound related to the aware-

ness in the Awareness Logic [10, 11, 26]. However, they are different

concepts. Awareness Logic distinguishes two kinds of beliefs: im-

plicit belief and explicit belief. The implicit belief is the same as the

belief in [24]. It is called “implicit” because a consequence of what

an agent believes might not be explicitly appreciated by the agent.

Thus, an agent might believe in something deduced by the logic

without being aware of it. From the standpoint that agents should

not have explicit beliefs about propositions they are unaware of,

Awareness Logic models awareness as a set of propositions for each

state, where an agent’s explicit beliefs are what the agent implicitly

believes and is also aware of [10, 26]. Since our cognition relation

differs from the (implicit) belief relation, as argued in the previous

paragraph, our cognition is also distinct from the awareness in the

Awareness Logic.

We consider non-deterministic situations when a complete ac-

tion profile may lead to different outcomes. Thus, a play is a triple

(𝛼, 𝛿, 𝜔) rather than a pair (𝛼, 𝛿), see Definition 1 item (6).

Definition 2. For any play (𝛼, 𝛿, 𝜔) of a game (𝐼 ,≡,Δ,Ω,∼, 𝑃, 𝜋)
and any formula 𝜑 ∈ Φ, the satisfaction relation (𝛼, 𝛿, 𝜔) ⊩ 𝜑 is
defined recursively:

(1) (𝛼, 𝛿, 𝜔) ⊩ 𝑝 if (𝛼, 𝛿, 𝜔) ∈ 𝜋 (𝑝),
(2) (𝛼, 𝛿, 𝜔) ⊩ ¬𝜑 if (𝛼, 𝛿, 𝜔) ⊮ 𝜑 ,
(3) (𝛼, 𝛿, 𝜔) ⊩ 𝜑 → 𝜓 if (𝛼, 𝛿, 𝜔) ⊮ 𝜑 or (𝛼, 𝛿, 𝜔) ⊩ 𝜓 ,
(4) (𝛼, 𝛿, 𝜔) ⊩ K𝑎𝜑 if (𝛼 ′, 𝛿 ′, 𝜔 ′) ⊩ 𝜑 for each play (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈

𝑃 such that 𝛼 ≡𝑎 𝛼 ′,
(5) (𝛼, 𝛿, 𝜔) ⊩ A𝑎𝜑 when there is an action 𝑑 ∈ Δ such that for

each play (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 , if 𝛼 ∼𝑎 𝛼 ′ and 𝛿 ′(𝑎) = 𝑑 , then
(𝛼 ′, 𝛿 ′, 𝜔 ′) ⊩ 𝜑 .

The satisfaction relation ⊩ in our semantics is a binary rela-

tion between a play and a formula. This approach is motivated

by the intended meaning of the modality A, which represents an

agent’s ability to perform an action leading to a specific outcome. A

play specifies a valid transition from an initial state to an outcome

through an action profile. The modality A expresses that, under

agent 𝑎’s cognition, the agent has an action 𝑑 that results in the

outcome 𝜑 (see item (5) in the definition above). Therefore, a for-

mula is a statement about a play, with propositional variables also

representing statements about plays. Of course, such a statement

could refer to the initial state, an action profile, or an outcome.

In item (5), the action 𝛿 ′(𝑎) is a uniform action under agent 𝑎’s

cognition. It is effective in all initial states 𝛼 ′
such that 𝛼 ∼𝑎 𝛼 ′

.

Such a uniform strategy has been studied in several logical systems

where the focus was often the concept involving knowledge and

action [2, 16, 32, 33, 45]. Different from these systems, our logical

systemmainly considers a uniform strategy for an agent’s cognition

to model the agent’s cognitive ability.

As discussed before, the knowledge operator K represents the ex
ante knowledge of an agent, as shown in item (4) of Definition 2,

where the indistinguishability relation is applied to initial states.

Moreover, for an intelligent agent to function effectively, it often

relies on foundational information, such as traffic rules, stored in

its knowledge base. The modality K also captures such knowledge,

which is independent of the agent’s actions.

4 AXIOMS AND THE SOUNDNESS
Our logical system contains all the propositional tautologies in

language Φ and the following axioms.

(1) Truth: K𝑎𝜑 → 𝜑 ,

(2) Negative Introspection: ¬K𝑎𝜑 → K𝑎¬K𝑎𝜑 ,
(3) K-Distributivity: K𝑎 (𝜑 → 𝜓 ) → (K𝑎𝜑 → K𝑎𝜓 ),
(4) A-Distributivity: K𝑎 (𝜑 → 𝜓 ) → (A𝑎𝜑 → A𝑎𝜓 ),
(5) Knowledge of Ability: A𝑎𝜑 → K𝑎A𝑎𝜑 .
(6) Ability: ¬A𝑎⊥.

The Truth, the Negative Introspection, and the K- Distributivity

axioms are standard axioms from the epistemic logic S5. The A-

Distributivity axiom states that if an agent knows that 𝜑 → 𝜓 and

the agent has a cognitive ability to provide information for the

action leading to 𝜑 , then the agent has the ability to provide infor-

mation for the action leading to𝜓 . Note that statement (2), which

we discussed in Section 1, is an instance of the A-Distributivity

axiom. The Knowledge of Ability axiom states that if an agent has

a cognitive ability to provide information for its action that leads

to an outcome, then the agent knows that it has such an ability.

Statement (1), which we discussed in Section 1, is an instance of

this axiom.

For the Ability axiom, recall that an autonomous agent may fail

to acquire information due to extreme circumstances, causing the

system to fail or terminate. In such cases, agents lose their cogni-

tive ability. Since we study cognitive ability, we do not consider

situations where the system terminates and an agent no longer has

the cognitive ability. This is captured in the Ability axiom. Note

that, by Definition 2 item (5), statement A𝑎⊥ means that there is

an action under the agent’s cognition that leads to the outcome

⊥. As ⊥ is unsatisfiable, statement A𝑎⊥ essentially indicates agent

𝑎’s cognitive inability. Therefore, ¬A𝑎⊥ represents that the agent

possesses the cognitive ability.

Same as a belief modality B in [24], the modality A does not

have a truth axiom. Thus, A𝑎𝜑 may not imply 𝜑 . Intuitively, this is

because an agent’s cognition is limited. For example, in the Tesla

accident where the car did not stop in front of the school bus stop

sign and struck a teenager, the Autopilot considered that it was safe

to drive and continued driving, denoted by A𝑎𝑢𝑡𝑜 “it is safe to drive".

Unfortunately, it turned out that it was not safe to drive.

Note thatmodalityA is not distributive, whereas a belief modality

B in [24] is, written as B𝑎 (𝜑 → 𝜓 ) → (B𝑎𝜑 → B𝑎𝜓 ). This is
because modality A is meant to capture the cognitive ability to

provide information about an action for an outcome rather than just



capturing an agent’s cognition. For example, consider the situation

when an agent has a cognitive ability to foresee that an action, say

𝑑1, will lead to 𝜑 → 𝜓 , and the agent also has the cognitive ability

to foresee that an action, say 𝑑2, will lead to 𝜑 . This does not mean

that the agent has the cognitive ability to foresee an action that will

lead to𝜓 . This is because action 𝑑1 may be different from action 𝑑2
and the agent may not have an action that would lead to𝜓 .

We say that a formula 𝜑 ∈ Φ is a theorem of our logical system,

written as ⊢ 𝜑 , if 𝜑 is derivable from the above axioms using the

Modus Ponens and the Necessitation inference rules:

𝜑, 𝜑 → 𝜓

𝜓
,

𝜑

K𝑎𝜑
.

We write𝑋 ⊢ 𝜑 if a formula 𝜑 ∈ Φ is derivable from the theorems
of our logical system and an additional set of assumptions 𝑋 ⊆ Φ
using only the Modus Ponens inference rule. A set 𝑋 is said to be

consistent if 𝑋 ⊬ ⊥.
The soundness of propositional tautologies and of the Modus

Ponens and theNecessitation inference rules is straightforward. The

soundness of the Truth axiom, the Negative Introspection axiom,

and the K-Distributivity axiom is standard. Below we prove the

soundness of the axioms related to the modality A. Let 𝜑 ∈ Φ and

(𝛼, 𝛿, 𝜔) ∈ 𝑃 be a play of a game (𝐼 ,≡,Δ,Ω,∼, 𝑃, 𝜋).

Lemma 4.1. If (𝛼, 𝛿, 𝜔) ⊩ K𝑎 (𝜑 → 𝜓 ) and (𝛼, 𝛿, 𝜔) ⊩ A𝑎𝜑 , then
(𝛼, 𝛿, 𝜔) ⊩ A𝑎𝜓 .

Proof. The assumption (𝛼, 𝛿, 𝜔) ⊩ K𝑎 (𝜑 → 𝜓 ), by Definition 2

item (4), implies that for each play (𝛼1, 𝛿1, 𝜔1) such that 𝛼 ≡𝑎 𝛼 ′
,

we have

(𝛼1, 𝛿1, 𝜔1) ⊩ 𝜑 → 𝜓 . (3)

The assumption (𝛼, 𝛿, 𝜔) ⊩ A𝑎𝜑 , by Definition 2 item (5), implies

that there is an action 𝑑 ∈ Δ such that for each play (𝛼2, 𝛿2, 𝜔2) ∈ 𝑃 ,

if 𝛼 ∼𝑎 𝛼2 and 𝛿2 (𝑎) = 𝑑 , then (𝛼2, 𝛿2, 𝜔2) ⊩ 𝜑. (4)

Consider an arbitrary play (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 such that 𝛼 ∼𝑎 𝛼 ′
and

𝛿 ′(𝑎) = 𝑑 . Then, (𝛼 ′, 𝛿 ′, 𝜔 ′) ⊩ 𝜑 by statement (4). At the same time,

𝛼 ≡𝑎 𝛼 ′
by Definition 1 item 5(a). Thus, it follows from statement (3)

that (𝛼 ′, 𝛿 ′, 𝜔 ′) ⊩ 𝜓 . Therefore, (𝛼, 𝛿, 𝜔) ⊩ A𝑎𝜓 , by Definition 2

item (5). □

Lemma 4.2. If (𝛼, 𝛿, 𝜔) ⊩ A𝑎𝜑 , then (𝛼, 𝛿, 𝜔) ⊩ K𝑎A𝑎𝜑 .

Proof. Assumption (𝛼, 𝛿, 𝜔) ⊩ A𝑎𝜑 implies that there is an

action 𝑑0 ∈ Δ such that for each play (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 ,

if 𝛼 ∼𝑎 𝛼 ′
and 𝛿 ′(𝑎) = 𝑑0, then (𝛼 ′, 𝛿 ′, 𝜔 ′) ⊩ 𝜑. (5)

Consider any play (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 such that 𝛼 ≡𝑎 𝛼 ′
. By Defini-

tion 2 item (4), it suffices to show that (𝛼 ′, 𝛿 ′, 𝜔 ′) ⊩ A𝑎𝜑 . That
is, we need to show that there is an action 𝑑 ∈ Δ such that for

each play (𝛼 ′′, 𝛿 ′′, 𝜔 ′′) ∈ 𝑃 , if 𝛼 ′ ∼𝑎 𝛼 ′′
and 𝛿 ′′(𝑎) = 𝑑 , then

(𝛼 ′′, 𝛿 ′′, 𝜔 ′′) ⊩ 𝜑 . Let 𝑑 be 𝑑0. Note that assumptions 𝛼 ≡𝑎 𝛼 ′
and

𝛼 ′ ∼𝑎 𝛼 ′′
imply that 𝛼 ∼𝑎 𝛼 ′′

by Definition 1 item 5(b). Then,

(𝛼 ′′, 𝛿 ′′, 𝜔 ′′) ⊩ 𝜑 by statement (5). □

Lemma 4.3. (𝛼, 𝛿, 𝜔) ⊮ A𝑎⊥.

Proof. Suppose that (𝛼, 𝛿, 𝜔) ⊩ A𝑎⊥. Then, By Definition 2

item (5), there is an action𝑑 ∈ Δ such that for each play (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈

𝑃 , if 𝛼 ∼𝑎 𝛼 ′
and 𝛿 ′(𝑎) = 𝑑 , then (𝛼 ′, 𝛿 ′, 𝜔 ′) ⊩ ⊥. However, con-

sider any play (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 such that 𝛼 ∼𝑎 𝛼 ′
and 𝛿 ′(𝑎) = 𝑑 . It

follows that (𝛼 ′, 𝛿 ′, 𝜔 ′) ⊮ ⊥, which leads to a contradiction. □

Next, we list five lemmas that will be used later in the proof of

completeness. The proofs of the first three lemmas can be found

in the Appendix section. Lemma 4.4 is the well-known positive

introspection principle. Lemma 4.7 says that if an agent does not

have the cognitive ability to perform an action that leads to an

outcome, then the agent knows that he does not have such an

ability. For the Lindenbaum’s lemma (Lemma 4.8), the standard

proof applies (see, e.g. Mendelson [31, Proposition 2.14]).

Lemma 4.4. ⊢ K𝑎𝜑 → K𝑎K𝑎𝜑 .

Lemma 4.5 (deduction). If 𝑋,𝜑 ⊢ 𝜓 , then 𝑋 ⊢ 𝜑 → 𝜓 .

Lemma 4.6. If 𝜑1 ∧ · · · ∧ 𝜑𝑛 ⊢𝜓 , then K𝑎𝜑1, . . . ,K𝑎𝜑𝑛 ⊢K𝑎𝜓 .
Lemma 4.7. ⊢ ¬A𝑎𝜑 → K𝑎¬A𝑎𝜑 .

Proof. By the Knowledge of Ability axiom, ⊢ A𝑎𝜑 → K𝑎A𝑎𝜑 .
Thus, ⊢ ¬K𝑎A𝑎𝜑 → ¬A𝑎𝜑 by the contrapositive. Hence, by the

Necessitation inference rule, ⊢ K𝑎 (¬K𝑎A𝑎𝜑 → ¬A𝑎𝜑). Then, by
the Distributivity axiom and the Modus Ponens inference rule

⊢ K𝑎¬K𝑎A𝑎𝜑 → K𝑎¬A𝑎𝜑 . Thus, ⊢ ¬K𝑎A𝑎𝜑 → K𝑎¬A𝑎𝜑 , by the

Negative Introspection axiom and the laws of propositional rea-

soning. Note that ¬A𝑎𝜑 → ¬K𝑎A𝑎𝜑 is the contrapositive of the

Truth axiom. Therefore, by the laws of propositional reasoning,

⊢ ¬A𝑎𝜑 → K𝑎¬A𝑎𝜑 . □

Lemma 4.8 (Lindenbaum). Any consistent set of formulae can be
extended to a maximal consistent set of formulae.

5 COMPLETENESS
In this section, we prove the completeness of our logical system,

listed as Theorem 5.1 below.

Theorem 5.1. If 𝑋 ⊬ 𝜑 , then there is a game and a play (𝛼, 𝛿, 𝜔)
in the game such that (𝛼, 𝛿, 𝜔) ⊩ 𝜒 for each 𝜒 ∈ 𝑋 and (𝛼, 𝛿, 𝜔) ⊮ 𝜑 .

Towards the proof of this theorem, we will construct a game,

called the canonical game, such that a play in the game satisfies

all formulas in X, but does not satisfy formula 𝜑 . We use the tuple

(𝐼 ,≡,Δ,Ω,∼, 𝑃, 𝜋) to denote the canonical game 𝐺 . The following

definitions, Definition 3 to Definition 11, specify each component

of the canonical game 𝐺 .

Definition 3. The set of outcomes Ω is the set of all maximal
consistent sets of formulae.

Definition 4. For each 𝜔1, 𝜔2 ∈ Ω, we say that 𝜔1 ≡𝑎 𝜔2 when,
for each 𝜑 ∈ Φ, if K𝑎𝜑 ∈ 𝜔1, then K𝑎𝜑 ∈ 𝜔2.

Lemma 5.2. If 𝜔1 ≡𝑎 𝜔2, then for each 𝜑 ∈ Φ, K𝑎𝜑 ∈ 𝜔1 if and
only if K𝑎𝜑 ∈ 𝜔2.

Proof. (⇒) By Definition 4, if K𝑎𝜑 ∈ 𝜔1, then K𝑎𝜑 ∈ 𝜔2.

(⇐) Suppose that K𝑎𝜑 ∉ 𝜔1. Then, ¬K𝑎𝜑 ∈ 𝜔1 because 𝜔1 is

maximal. Thus, 𝜔1 ⊢ K𝑎¬K𝑎𝜑 by the Negative Introspection axiom.

Hence, K𝑎¬K𝑎𝜑 ∈ 𝜔1 since 𝜔1 is maximal. Then, by Definition 4,

it follows from the assumption 𝜔1 ≡𝑎 𝜔2 that K𝑎¬K𝑎𝜑 ∈ 𝜔2. Thus,

𝜔2 ⊢ ¬K𝑎𝜑 by the Truth axiom. Therefore, ¬K𝑎𝜑 ∈ 𝜔2 because 𝜔2

is maximal. □



The next lemma directly follows from Lemma 5.2.

Lemma 5.3. Relation ≡𝑎 is an equivalence relation.

Definition 5. 𝜔1 ≡A 𝜔2 if 𝜔1 ≡𝑎 𝜔2 for every 𝑎 ∈ A.

The set 𝐼 of initial states is the set of equivalence classes with

respect to the relation ≡A .

Definition 6. 𝐼 ≔ Ω/≡A .

Lemma 5.4. Relation ≡𝑎 is well-defined on set 𝐼 .

Proof. Suppose that 𝜔1 ≡𝑎 𝜔2. Consider any outcomes 𝜔 ′
1
and

𝜔 ′
2
such that 𝜔1 ≡A 𝜔 ′

1
and 𝜔2 ≡A 𝜔 ′

2
. It suffices to prove that

𝜔 ′
1
≡𝑎 𝜔 ′

2
. Note that K𝑎𝜑 ∈ 𝜔1 if and only if K𝑎𝜑 ∈ 𝜔 ′

1
by the

assumption 𝜔1 ≡A 𝜔 ′
1
, Definition 5, and Lemma 5.2. Similarly,

it follows from the assumption 𝜔2 ≡A 𝜔 ′
2
that K𝑎𝜑 ∈ 𝜔2 if and

only if K𝑎𝜑 ∈ 𝜔 ′
2
. Since 𝜔1 ≡𝑎 𝜔2, we have K𝑎𝜑 ∈ 𝜔1 if and only

if K𝑎𝜑 ∈ 𝜔2, again by Lemma 5.2. Thus, K𝑎𝜑 ∈ 𝜔 ′
1
if and only

if K𝑎𝜑 ∈ 𝜔 ′
2
by propositional reasoning. Therefore, 𝜔 ′

1
≡𝑎 𝜔 ′

2
by

Definition 4. □

The next lemma directly follows from Lemma 5.4.

Lemma 5.5. 𝛼 ≡𝑎 𝛼 ′ if and only if 𝜔 ≡𝑎 𝜔 ′, for any initial states
𝛼, 𝛼 ′ ∈ 𝐼 and any outcomes 𝜔 ∈ 𝛼 and 𝜔 ′ ∈ 𝛼 ′.

Note that an initial state is an equivalence class of outcomes.

The next lemma shows that an agent maintains the same cognitive

ability in the outcomes that belong to the same initial state.

Lemma 5.6. A𝑎𝜑 ∈ 𝜔 if and only if A𝑎𝜑 ∈ 𝜔 ′, for each 𝜔,𝜔 ′ ∈ Ω
such that 𝜔 ≡𝑎 𝜔 ′ and each 𝜑 ∈ Φ.

Proof. Since relation≡𝑎 is an equivalence relation by Lemma 5.3,

it suffices to show that if A𝑎𝜑 ∈ 𝜔 , then A𝑎𝜑 ∈ 𝜔 ′
. Assume

A𝑎𝜑 ∈ 𝜔 . Then, by the Knowledge of Ability axiom, 𝜔 ⊢ K𝑎A𝑎𝜑 .
Hence, K𝑎A𝑎𝜑 ∈ 𝜔 because 𝜔 is a maximal consistent set. Thus,

K𝑎A𝑎𝜑 ∈ 𝜔 ′
by the statement 𝜔 ≡𝑎 𝜔 ′

and Lemma 5.2. Hence,

𝜔 ′ ⊢ A𝑎𝜑 by the Truth axiom and the Modus Ponens rule. There-

fore, A𝑎𝜑 ∈ 𝜔 ′
since 𝜔 ′

is a maximal consistent set. □

To define the cognitive relation ∼ that satisfies the conditions

in item (5) of Definition 1, we must ensure that the relation ∼𝑎 is a

subset of ≡𝑎 . Additionally, recall that an intelligent agent may lose

its cognitive ability in extreme circumstances, and that ¬A𝑎⊥ indi-

cates that agent 𝑎 retains cognitive ability. Therefore, the cognitive

relation only considers pairs of states where the agent possesses

cognitive ability, as outlined in the definition below.

Definition 7. ∼𝑎≔ {(𝜔1, 𝜔2) |𝜔1 ≡𝑎 𝜔2 and ¬A𝑎⊥ ∈ 𝜔1}.

Definition 7 defines the cognition relation on the set of outcomes

and the relation ∼𝑎 is a proper subset of the relation ≡𝑎 for any

agent 𝑎 ∈ A. This definition is used to define the cognition relation

on the set of initial states, as shown in the next definition.

Definition 8. 𝛼1 ∼𝑎 𝛼2 if 𝛼1 ≡𝑎 𝛼2 and for each 𝜔1 ∈ 𝛼1, there
is 𝜔2 ∈ 𝛼2 such that 𝜔1 ∼𝑎 𝜔2.

To show that the relation ∼𝑎 on set 𝐼 is well-defined, we need to

prove that it satisfies conditions 5(a) and 5(b) in Definition 1.

Lemma 5.7. Relation ∼𝑎 on set 𝐼 satisfies item (5) of Definition 1.

Proof. We need to show that relation∼𝑎 satisfies both condition
(a) and condition (b) in item (5) of Definition 1.

Condition (a): ∼𝑎 ⊆ ≡𝑎 holds true by Definition 7.

For condition (b), consider arbitrary initial states 𝛼1, 𝛼2, 𝛼3 ∈ 𝐼 .

Assume 𝛼1 ≡𝑎 𝛼2 and 𝛼2 ∼𝑎 𝛼3. It suffices to show 𝛼1 ∼𝑎 𝛼3.

Assumption 𝛼2 ∼𝑎 𝛼3, by Definition 8, implies that 𝛼2 ≡𝑎 𝛼3.

Then, by Lemma 5.5, Lemma 5.3, and the assumption 𝛼1 ≡𝑎 𝛼2, we

have 𝛼1 ≡𝑎 𝛼3 (∗). Thus, to show 𝛼1 ∼𝑎 𝛼3, by Definition 8, we

need to show that for each 𝜔1 ∈ 𝛼1, there is 𝜔3 ∈ 𝛼3 such that

𝜔1 ∼𝑎 𝜔3.

Consider any 𝜔1 ∈ 𝛼1 and any 𝜔3 ∈ 𝛼3. Then, statement (∗)
implies 𝜔1 ≡𝑎 𝜔3, by Lemma 5.5. Thus, by Definition 7, it suffices

to show that ¬A𝑎⊥ ∈ 𝜔1.

Consider any 𝜔2 ∈ 𝛼2. Assumption 𝛼2 ∼𝑎 𝛼3, by Definition 8

and Definition 7, implies that ¬A𝑎⊥ ∈ 𝜔2. Moreover, assumption

𝛼1 ≡𝑎 𝛼2 implies 𝜔1 ≡𝑎 𝜔2 by Lemma 5.5. Thus, ¬A𝑎⊥ ∈ 𝜔1 by

Lemma 5.6. Therefore, the desired is true. □

The set of actions is defined to be the set of all formulae.

Definition 9. Δ = Φ.

The set 𝑃 of valid plays is defined in the next definition. Intu-

itively, from any initial state, agents take actions that lead to an

outcome. By Definition 2 item (5), an agent’s ability to provide

information about an action for the outcome 𝜑 is interpreted as the

agent having an action such that, under the agent’s cognition, this

action will lead to 𝜑 . As a result, 𝜑 should hold true in the outcome.

In the canonical model, we use 𝜑 itself as the agent’s action, see

Definition 10 below.

Next, recall that ¬A𝑎⊥ represents that the agent possesses the

cognitive ability. When an autonomous agent loses its cognitive

ability, the system may terminate. Since a valid play represents a

system transition, it should not include situations when system

fails and an agent no longer has its cognitive ability. Thus, ¬A𝑎⊥
is in the outcome for valid plays.

In Definition 6, initial states are defined to be the equivalence

classes with respect to the relation ≡A . This is to ensure that con-

ditions required for valid plays work for any agent in set A. The

next definition specifies the set of valid plays.

Definition 10. The set 𝑃 ⊆ 𝐼 × ΔA × Ω consists of all triples
(𝛼, 𝛿, 𝜔) such that 𝜔 ∈ 𝛼 , ¬A𝑎⊥ ∈ 𝜔 for each 𝑎 ∈ A, and for each
A𝑎𝜑 ∈ 𝜔 , if 𝛿 (𝑎) = 𝜑 , then 𝜑 ∈ 𝜔 .

Definition 11. 𝜋 (𝑝) = {(𝛼, 𝛿, 𝜔) ∈ 𝑃 | 𝑝 ∈ 𝜔} for any atomic
proposition 𝑝 .

This concludes the definition of the canonical game 𝐺 . The next

lemma shows that given any outcome that contains ¬A𝑎⊥, a play
can always be constructed from the outcome.

Lemma 5.8. For any outcome 𝜔 ∈ Ω where ¬A𝑎⊥ ∈ 𝜔 , there is
an initial state 𝛼 ∈ 𝐼 and a complete action profile 𝛿 ∈ ΔA such that
(𝛼, 𝛿, 𝜔) ∈ 𝑃 .

Proof. Let 𝛼 be the equivalence class of 𝜔 with respect to rela-

tion ≡A . Thus,𝜔 ∈ 𝛼 . Let 𝛿 (𝑎) = ⊤ for each agent 𝑎 ∈ A. Consider

any formula A𝑎𝜑 ∈ 𝜔 such that 𝛿 (𝑎) = 𝜑 . By Definition 10 and the

assumption ¬A𝑎⊥ ∈ 𝜔 , it suffices to show that 𝜑 ∈ 𝜔 . Indeed, since



𝛿 (𝑎) = ⊤, by the assumption 𝛿 (𝑎) = 𝜑 , we have 𝜑 = ⊤. Therefore,
𝜑 ∈ 𝜔 because set 𝜔 is maximal. □

In proving the completeness theorem, a key step of the proof

is an induction lemma, so-called the “truth lemma" (Lemma 5.13

in this paper). This lemma is proven by induction on the structure

complexity of the language. The following four lemmas address the

sub-cases within the induction step for Lemma 5.13, specifically for

the two modalities: the knowledge modality K and the cognitive

ability modality A.

Lemma 5.9. For any play (𝛼, 𝛿, 𝜔) ∈ 𝑃 , if K𝑎𝜑 ∈ 𝜔 , then 𝜑 ∈ 𝜔 ′

for each play (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 such that 𝛼 ≡𝑎 𝛼 ′.

Proof. By Definition 10, assumption (𝛼, 𝛿, 𝜔) ∈ 𝑃 implies𝜔 ∈ 𝛼 .

Consider an arbitrary play (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 such that 𝛼 ≡𝑎 𝛼 ′
. Then,

𝜔 ′ ∈ 𝛼 ′
byDefinition 10. By Lemma 5.5 and assumption𝛼 ≡𝑎 𝛼 ′

, we

have 𝜔 ≡𝑎 𝜔 ′
. Thus, K𝑎𝜑 ∈ 𝜔 ′

by Definition 4 and the assumption

K𝑎𝜑 ∈ 𝜔 of the lemma. Thus, 𝜔 ′ ⊢ 𝜑 by the Truth axiom and the

Modus Ponens rule. Therefore, 𝜑 ∈ 𝜔 ′
because 𝜔 ′

is maximal by

Definition 3. □

Lemma 5.10. For any play (𝛼, 𝛿, 𝜔) ∈ 𝑃 , if K𝑎𝜑 ∉ 𝜔 , then there
exists a play (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 such that 𝛼 ≡𝑎 𝛼 ′ and 𝜑 ∉ 𝜔 ′.

Proof. Consider set 𝑋 ≔ {¬𝜑} ∪ {𝜒 | K𝑎 𝜒 ∈ 𝜔}.
Claim 1. Set 𝑋 is consistent.

Proof of Claim. Suppose the opposite. Then, there are formulas

K𝑎 𝜒1,K𝑎 𝜒2, . . . ,K𝑎 𝜒𝑛 ∈ 𝜔 (6)

such that 𝜒1∧ 𝜒2∧· · ·∧ 𝜒𝑛 ⊢ 𝜑. Then, K𝑎 𝜒1,K𝑎 𝜒2, . . . ,K𝑎 𝜒𝑛 ⊢ K𝑎𝜑,
by Lemma 4.6. Thus, by statement (6), we have 𝜔 ⊢ K𝑎𝜑 , which
contradicts the assumption that K𝑎𝜑 ∉ 𝜔 because set𝜔 is a maximal

consistent set. Therefore, set 𝑋 is consistent. ⊠

Let𝜔 ′
be a maximal consistent extension of set𝑋 . By Lemma 4.8,

𝜔 ′
exists. Let 𝛼 ′

be the equivalence class of 𝜔 ′
. Thus, 𝜔 ′ ∈ 𝛼 ′

.

Claim 2. 𝜔 ≡𝑎 𝜔 ′.

Proof of Claim. By Definition 4, we need to prove that for each

𝜏 ∈ Φ, if K𝑎𝜏 ∈ 𝜔 , then K𝑎𝜏 ∈ 𝜔 ′
. Suppose K𝑎𝜏 ∈ 𝜔 . Then,

𝜔 ⊢ K𝑎K𝑎𝜏 by Lemma 4.4 and the Modus Ponens rule. Hence,

K𝑎K𝑎𝜏 ∈ 𝜔 because 𝜔 is maximal. Thus, K𝑎𝜏 ∈ 𝑋 ⊆ 𝜔 ′
, by the

definition of set 𝑋 and the choice of 𝜔 ′
. ⊠

Next, we define the complete action profile 𝛿 ′. For each agent

𝑏 ∈ A, let

𝛿 ′(𝑏) = ⊤. (7)

Claim 3. (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 .

Proof of Claim. First, note that 𝜔 ′ ∈ 𝛼 ′
. Next, we show that

¬A𝑎⊥ ∈ 𝜔 ′
. Indeed, assumption (𝛼, 𝛿, 𝜔) ∈ 𝑃 implies ¬A𝑎⊥ ∈ 𝜔 by

Definition 10. Thus, ¬A𝑎⊥ ∈ 𝜔 ′
by Claim 2 and Lemma 5.6. Finally,

consider any A𝑏𝜓 ∈ 𝜔 ′
such that 𝛿 ′(𝑏) = 𝜓 . By Definition 10, it suf-

fices to show that𝜓 ∈ 𝜔 ′
. Indeed, 𝛿 ′(𝑏) = ⊤ by equation (7). Hence,

𝜓 = 𝛿 ′(𝑏) = ⊤. Therefore,𝜓 ∈ 𝜔 ′
because set 𝜔 ′

is maximal. ⊠

To complete the proof, note that 𝛼 ≡𝑎 𝛼 ′
by Lemma 5.5 and

Claim 2. Also notice ¬𝜑 ∈ 𝑋 ⊆ 𝜔 ′
by the definition of set 𝑋 and

the choice of set 𝜔 ′
. Therefore, 𝜑 ∉ 𝜔 ′

because 𝜔 ′
is a maximal

consistent set. □

Lemma 5.11. For any play (𝛼, 𝛿, 𝜔) ∈ 𝑃 and A𝑎𝜑 ∈ 𝜔 , there is an
action 𝑑 ∈ Δ such that for each play (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 where 𝛼 ∼𝑎 𝛼 ′

and 𝛿 ′(𝑎) = 𝑑 , we have 𝜑 ∈ 𝜔 ′.

Proof. Let 𝑑 = 𝜑 . Consider any play (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 such that

𝛼 ∼𝑎 𝛼 ′
and 𝛿 ′(𝑎) = 𝑑 . Then, 𝛼 ≡𝑎 𝛼 ′

by Definition 8. By Defini-

tion 10, assumption (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 implies that 𝜔 ′ ∈ 𝛼 ′
. Similarly,

assumption (𝛼, 𝛿, 𝜔) ∈ 𝑃 implies that 𝜔 ∈ 𝛼 . Then, it follows

from Lemma 5.5 that 𝜔 ≡𝑎 𝜔 ′
. Thus, assumption A𝑎𝜑 ∈ 𝜔 , by

Lemma 5.6, implies A𝑎𝜑 ∈ 𝜔 ′
. Therefore, 𝜑 ∈ 𝜔 ′

by the assump-

tion (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 , the assumption 𝛿 ′(𝑎) = 𝑑 = 𝜑 , and Defini-

tion 10. □

Lemma 5.12. For any play (𝛼, 𝛿, 𝜔) ∈ 𝑃 , if A𝑎𝜑 ∉ 𝜔 , then for
each 𝑑 ∈ Δ, there exists a play (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 such that 𝛼 ∼𝑎 𝛼 ′,
𝛿 ′(𝑎) = 𝑑 , and 𝜑 ∉ 𝜔 ′.

Proof. Consider set

𝑋 ≔ {¬𝜑} ∪ {𝜓 | A𝑎𝜓 ∈ 𝜔,𝑑 = 𝜓 } ∪ {𝜒 | K𝑎 𝜒 ∈ 𝜔}.

Claim 4. Set 𝑋 is consistent.

Proof of Claim. Suppose the opposite. Then there are formulas

A𝑎𝜓,K𝑎 𝜒1,K𝑎 𝜒2, . . . ,K𝑎 𝜒𝑛 ∈ 𝜔 (8)

such that 𝑑 = 𝜓 (9)

and 𝜓 ∧ 𝜒1 ∧ · · · ∧ 𝜒𝑛 ⊢ 𝜑.

By Lemma 4.5, 𝜒1 ∧ · · · ∧ 𝜒𝑛 ⊢ 𝜓 → 𝜑. Then, by Lemma 4.6,

K𝑎 𝜒1, . . . ,K𝑎 𝜒𝑛 ⊢ K𝑎 (𝜓 → 𝜑) . By the A-Distributivity axiom and

the Modus Ponens rule, K𝑎 𝜒1, . . . ,K𝑎 𝜒𝑛 ⊢ A𝑎𝜓 → A𝑎𝜑. Hence,
K𝑎 𝜒1,K𝑎 𝜒2, . . . ,K𝑎 𝜒𝑛,A𝑎𝜓 ⊢ A𝑎𝜑 , by the Modus Ponens inference

rule. Thus, 𝜔 ⊢ A𝑎𝜑 , by statement (8). This contradicts the as-

sumption that A𝑎𝜑 ∉ 𝜔 because set 𝜔 is a maximal consistent set.

Therefore, set 𝑋 is consistent. ⊠

Let𝜔 ′
be a maximal consistent extension of set𝑋 . By Lemma 4.8,

𝜔 ′
exists. Let 𝛼 ′

be the equivalence class of 𝜔 ′
. Thus, 𝜔 ′ ∈ 𝛼 ′

.

Claim 5. 𝜔 ≡𝑎 𝜔 ′.

Proof of Claim. By Definition 4, it suffices to show that if K𝑎𝜏 ∈ 𝜔

then K𝑎𝜏 ∈ 𝜔 ′
, for each 𝜏 ∈ Φ. Assume that K𝑎𝜏 ∈ 𝜔 . Then,

𝜔 ⊢ K𝑎K𝑎𝜏 , by Lemma 4.4. Since 𝜔 is maximal, K𝑎K𝑎𝜏 ∈ 𝜔 . Thus,

by the definition of set 𝑋 and the choice of 𝜔 ′
, K𝑎𝜏 ∈ 𝑋 ⊆ 𝜔 ′

. ⊠

Claim 6. 𝛼 ∼𝑎 𝛼 ′.

Proof of Claim. First, note that 𝛼 ≡𝑎 𝛼 ′
by Lemma 5.5 and

Claim 5. Then, by Definition 8, it suffices to show that for each

𝜔1 ∈ 𝛼 , there is 𝜔2 ∈ 𝛼 ′
such that 𝜔1 ∼𝑎 𝜔2. Choose an arbitrary

𝜔1 ∈ 𝛼 . For any 𝜔2 ∈ 𝛼 ′
, we have 𝜔1 ≡𝑎 𝜔2 by Lemma 5.5 and the

statement 𝛼 ≡𝑎 𝛼 ′
. Then, by Definition 7, it suffices to show that

¬A𝑎⊥ ∈ 𝜔1. Note that assumption (𝛼, 𝛿, 𝜔) ∈ 𝑃 implies that 𝜔 ∈ 𝛼

and ¬A𝑎⊥ ∈ 𝜔 by Definition 10. Thus, 𝜔 ≡𝑎 𝜔1 by Definition 6

and the assumption 𝜔1 ∈ 𝛼 . Hence, ¬A𝑎⊥ ∈ 𝜔1 by Lemma 5.6. ⊠



Next, we define the complete action profile 𝛿 ′. For each agent

𝑏 ∈ A, let

𝛿 ′(𝑏) ≔
{
𝑑, if 𝑏 = 𝑎,

⊤, otherwise.

(10)

Claim 7. (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 .

Proof of Claim. First, note that 𝜔 ′ ∈ 𝛼 ′
by the definition of 𝛼 ′

.

Also note that ¬A𝑎⊥ ∈ 𝜔 by the assumption (𝛼, 𝛿, 𝜔) ∈ 𝑃 and

Definition 10. Thus, ¬A𝑎⊥ ∈ 𝜔 ′
by Claim 5 and Lemma 5.6. Finally,

consider any A𝑏𝜓 ∈ 𝜔 ′
such that 𝛿 ′(𝑏) = 𝜓 . It suffices to show that

𝜓 ∈ 𝜔 ′
by Definition 10.

Case I: 𝑏 = 𝑎. Then A𝑎𝜓 ∈ 𝜔 by the assumption A𝑏𝜓 ∈ 𝜔 ′
, the

assumption 𝑏 = 𝑎 of the case, Claim 5, and Lemma 5.6. At the same

time, 𝑑 = 𝜓 by equation (9). Therefore, we have𝜓 ∈ 𝑋 ⊆ 𝜔 ′
by the

definition of 𝑋 and choice of 𝜔 ′
.

Case II: 𝑏 ≠ 𝑎. Then, 𝛿 ′(𝑏) = ⊤ by equation (10). Hence,𝜓 = 𝛿 ′(𝑏) =
⊤. Therefore,𝜓 ∈ 𝜔 ′

because set 𝜔 ′
is maximal. ⊠

To finish the proof, notice that 𝛼 ∼𝑎 𝛼 ′
by Claim 6. Moreover,

¬𝜑 ∈ 𝑋 ⊆ 𝜔 ′
. Thus, 𝜑 ∉ 𝜔 ′

since 𝜔 ′
is consistent. □

The next lemma is the truth lemma in our completeness proof.

Lemma 5.13. (𝛼, 𝛿, 𝜔) ⊩ 𝜑 if and only if 𝜑 ∈ 𝜔 .

Proof. We prove the lemma by induction on the complexity of

formula 𝜑 . If 𝜑 is a propositional variable, then the lemma follows

from item (1) of Definition 2 and Definition 11. If formula 𝜑 is an

implication or a negation, then the lemma follows from items (2)

or (3) of Definition 2 and the fact that 𝜔 is a maximal consistent set

in the standard way.

Suppose that formula 𝜑 is of the form K𝑎𝜑 .
(⇐) Assume K𝑎𝜑 ∈ 𝑤 . Consider any (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 such that

𝛼 ≡𝑎 𝛼 ′
. Then, by Lemma 5.9, we have 𝜑 ∈ 𝜔 ′

. Thus, by the

induction hypothesis, (𝛼 ′, 𝛿 ′, 𝜔 ′) ⊩ 𝜑 . Therefore, (𝛼, 𝛿, 𝜔) ⊩ K𝑎𝜑
by Definition 2 item (4).

(⇒) Assume K𝑎𝜑 ∉ 𝑤 . Then by Lemma 5.10, there is a play

(𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 such that 𝛼 ≡𝑎 𝛼 ′
and 𝜑 ∉ 𝜔 ′

. Thus, by the in-

duction hypothesis, (𝛼 ′, 𝛿 ′, 𝜔 ′) ⊮ 𝜑 . Therefore, (𝛼, 𝛿, 𝜔) ⊮ K𝑎𝜑 by

Definition 2 item (4).

Suppose that formula 𝜑 is of the form A𝑎𝜑 .
(⇐) Assume A𝑎𝜑 ∈ 𝑤 . Then, by Lemma 5.11, there is an action

𝑑 ∈ Δ such that for each play (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃 , if 𝛼 ∼𝑎 𝛼 ′
and 𝛿 ′(𝑎) =

𝑑 , then 𝜑 ∈ 𝜔 ′
. Thus, by the induction hypothesis, (𝛼 ′, 𝛿 ′, 𝜔 ′) ⊩ 𝜑 .

Therefore, (𝛼, 𝛿, 𝜔) ⊩ A𝑎𝜑 by Definition 2 item (5).

(⇒) Let A𝑎𝜑 ∉ 𝜔 . Then, ¬A𝑎𝜑 ∈ 𝜔 by the maximality of set 𝜔 .

Hence, by Lemma 5.12, for each𝑑 ∈ Δ, there is a play (𝛼 ′, 𝛿 ′, 𝜔 ′) ∈ 𝑃

such that 𝛼 ∼𝑎 𝛼 ′
, 𝛿 ′(𝑎) = 𝑑 , and ¬𝜑 ∈ 𝜔 ′

. Thus 𝜑 ∉ 𝜔 ′
by

the consistency of set 𝜔 ′
. Hence, by the induction hypothesis,

(𝛼 ′, 𝛿 ′, 𝜔 ′) ⊮ 𝜑 . Thus, (𝛼, 𝛿, 𝜔) ⊮ A𝑎𝜑 by Definition 2 item (5). □

To finish the proof of completeness, assume that 𝑋 ⊬ 𝜑 . We need

to show that there is a game and a play (𝛼, 𝛿, 𝜔) in the game such

that (𝛼, 𝛿, 𝜔) ⊩ 𝜒 for each 𝜒 ∈ 𝑋 and (𝛼, 𝛿, 𝜔) ⊮ 𝜑 . Since 𝑋 ⊬ 𝜑 ,
the set 𝑋 ∪ {¬𝜑} is consistent. By Lemma 4.8, there is a maximal

consistent extension 𝜔0 of the set 𝑋 ∪ {¬𝜑}.
Consider the canonical game 𝐺 = (𝐼 , {≡𝑎}𝑎∈A ,Δ,Ω, {∼𝑎}𝑎∈A ,

𝑃, 𝜋). By Lemma 5.3, relation ≡𝑎 in the game𝐺 satisfies the condi-

tion in item (2) of Definition 1. By Lemma 5.7, relation ∼𝑎 satisfies

conditions in item (5) of Definition 1. Thus, the canonical game𝐺

is indeed a game defined in Definition 1.

Note that 𝜔0 ∈ Ω by Definition 3. Then, 𝜔0 ⊢ ¬A𝑎⊥, by the

Ability axiom. Thus, ¬A𝑎⊥ ∈ 𝜔0, since 𝜔0 is a maximal consistent

set. Hence, by Lemma 5.8, there is an initial state 𝛼0 and a complete

action profile 𝛿0 such that (𝛼0, 𝛿0, 𝜔0) ∈ 𝑃 . Since 𝑋 ∪ {¬𝜑} ⊆ 𝜔0,

by Lemma 5.13, we have (𝛼0, 𝛿0, 𝜔0) ⊩ 𝜒 for each 𝜒 ∈ 𝑋 ⊆ 𝜔0 and

(𝛼0, 𝛿0, 𝜔0) ⊩ ¬𝜑 . Thus, (𝛼0, 𝛿0, 𝜔0) ⊮ 𝜑 .

6 CONCLUSION AND FUTUREWORK
In this paper, we explored the cognitive ability of intelligent agents

and introduced a logical system to reason about the interplay be-

tween knowledge and cognitive ability of intelligent agents. In our

framework, an agent’s cognitive ability refers to its ability to per-

form an action leading to specific outcomes under its cognition. We

argue that an agent’s cognition differs from its belief and that must

remain consistent with its knowledge. Finally, we provided a sound

and complete axiomatization for our proposed system.

Our work is intended to be a foundational step toward in-depth

studies of cognitive ability of intelligent agents that can be po-

tentially used to recognize hazards, communicate with human op-

erators before an unfavorable outcome, and assist retrospective

analysis afterwards, thus enhancing safety and reliability of such

systems. We do not consider complex structures of autonomous

agents and their environments, such as the limited resources neces-

sary for an agent to achieve its goal.

There are potentially many directions to extend the current

work. For example, one direction is to extend the current work

to account for dynamic environments where the knowledge base

evolves through interactions with the environment. The history of

actions taken need to be considered and the assumption of perfect

recall for intelligent agents also is reasonable.

Another direction is to consider the collaboration of multiple

agents, for example, the collaboration between the self-driving car

and the backup driver. Traditionally, the concept of a coalition’s

knowledge extends individual knowledge to a group of agents. This

includes distributed knowledge where members share their knowl-

edge with each other, common knowledge, and group knowledge

where each member individually knows the same thing. However,

these notions of knowledge do not align well with the dynamics

of collaboration between a self-driving car and a backup driver.

Consider a situation when one agent recognizes a potential risk of

collision. Then an action should be taken immediately to prevent

the collision. This highlights the need for a new type of coalitional

knowledge and effective collaboration may require a more nuanced

understanding of knowledge and cognition ability.
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APPENDIX
Lemma 4.4. ⊢ K𝑎𝜑 → K𝑎K𝑎𝜑 .

Proof. Formula K𝑎¬K𝑎𝜑 → ¬K𝑎𝜑 is an instance of the Truth

axiom. Thus, ⊢ K𝑎𝜑 → ¬K𝑎¬K𝑎𝜑 by contraposition. Hence, consid-

ering the following instance of the Negative Introspection axiom:

¬K𝑎¬K𝑎𝜑 → K𝑎¬K𝑎¬K𝑎𝜑 , we have
⊢ K𝑎𝜑 → K𝑎¬K𝑎¬K𝑎𝜑. (11)

At the same time, ¬K𝑎𝜑 → K𝑎¬K𝑎𝜑 is an instance of the Nega-

tive Introspection axiom. Thus, ⊢ ¬K𝑎¬K𝑎𝜑 → K𝑎𝜑 by the law

of contrapositive in the propositional logic. Hence, by the Ne-

cessitation inference rule, ⊢ K𝑎 (¬K𝑎¬K𝑎𝜑 → K𝑎𝜑). Thus, by
the Distributivity axiom and the Modus Ponens inference rule,

⊢ K𝑎¬K𝑎¬K𝑎𝜑 → K𝑎K𝑎𝜑. The latter, together with statement (11),

implies the statement of the lemma by propositional reasoning. □

Lemma 4.5. If 𝑋,𝜑 ⊢ 𝜓 , then 𝑋 ⊢ 𝜑 → 𝜓 .

Proof. Suppose that sequence 𝜓1, . . . ,𝜓𝑛 is a proof from set

𝑋 ∪{𝜑} and the theorems of our logical system that uses the Modus

Ponens inference rule only. In other words, for each 𝑘 ≤ 𝑛, either

(1) ⊢ 𝜓𝑘 , or
(2) 𝜓𝑘 ∈ 𝑋 , or

(3) 𝜓𝑘 is equal to 𝜑 , or

(4) there are 𝑖, 𝑗 < 𝑘 such that formula𝜓 𝑗 is equal to𝜓𝑖 → 𝜓𝑘 .

It suffices to show that 𝑋 ⊢ 𝜑 → 𝜓𝑘 for each 𝑘 ≤ 𝑛. We prove

this by induction on 𝑘 through considering the four cases above

separately.

Case 1: ⊢ 𝜓𝑘 . Note that𝜓𝑘 → (𝜑 → 𝜓𝑘 ) is a propositional tautol-
ogy, and thus, is an axiom of our logical system. Hence, ⊢ 𝜑 → 𝜓𝑘
by the Modus Ponens inference rule. Therefore, 𝑋 ⊢ 𝜑 → 𝜓𝑘 .

Case 2:𝜓𝑘 ∈ 𝑋 . Note again that𝜓𝑘 → (𝜑 → 𝜓𝑘 ) is a propositional
tautology, and thus, is an axiom of our logical system. Therefore,

by the Modus Ponens inference rule, 𝑋 ⊢ 𝜑 → 𝜓𝑘 .

Case 3: formula𝜓𝑘 is equal to 𝜑 . Thus, 𝜑 → 𝜓𝑘 is a propositional

tautology. Therefore, 𝑋 ⊢ 𝜑 → 𝜓𝑘 .

Case 4: formula𝜓 𝑗 is equal to𝜓𝑖 → 𝜓𝑘 for some 𝑖, 𝑗 < 𝑘 . Thus, by

the induction hypothesis, 𝑋 ⊢ 𝜑 → 𝜓𝑖 and 𝑋 ⊢ 𝜑 → (𝜓𝑖 → 𝜓𝑘 ).
Note that formula (𝜑 → 𝜓𝑖 ) → ((𝜑 → (𝜓𝑖 → 𝜓𝑘 )) → (𝜑 → 𝜓𝑘 ))
is a propositional tautology. Therefore, 𝑋 ⊢ 𝜑 → 𝜓𝑘 by applying

the Modus Ponens inference rule twice. □

Lemma 4.6. If 𝜑1 ∧ · · · ∧ 𝜑𝑛 ⊢𝜓 , then K𝑎𝜑1, . . . ,K𝑎𝜑𝑛 ⊢K𝑎𝜓 .

Proof. Assumption 𝜑1 ∧ · · · ∧ 𝜑𝑛 ⊢𝜓 , by Lemma 4.5 applied 𝑛

times, implies that ⊢ 𝜑1 → (𝜑2 → . . . (𝜑𝑛 → 𝜓 ) . . . ). Thus, by the

Necessitation inference rule,

⊢ K𝑎 (𝜑1 → (𝜑2 → . . . (𝜑𝑛 → 𝜓 ) . . . )) .
Hence, by the K-Distributivity axiom and the Modus Ponens rule,

⊢ K𝑎𝜑1 → K𝑎 (𝜑2 → . . . (𝜑𝑛 → 𝜓 ) . . . ).
Then, again by the Modus Ponens rule,

K𝑎𝜑1 ⊢ K𝑎 (𝜑2 → . . . (𝜑𝑛 → 𝜓 ) . . . ).
Therefore, K𝑎𝜑1, . . . ,K𝑎𝜑𝑛 ⊢ K𝑎𝜓 by applying the previous steps

(𝑛 − 1) more times. □
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